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1

1 Introduction

Diagnostic tests are important tools for the time series modeling. Most of existing di-
agnostic tests are designed to examine the dependence structure of a time series. If a
time series is serially uncorrelated, no linear function of the variables in the information
set can account for the behavior of the current variable. If a time series is a martingale
difference sequence (to be defined later), no function, linear or nonlinear, of the variables
in the information set can characterize the current variable. Yet a function of the current
variable may still depend on the past information. A serially independent time series
implies that there is absolutely no relationship between the current variable and past
information. Diagnostic testing on raw data series thus provides information regarding
how these data might be modeled. When a model is estimated, we can also apply di-
agnostic tests to model residuals and check whether the estimated model can be further
improved upon.

In practice, there are three classes of diagnostic tests, each focusing on a specific
dependence structure of a time series. The tests of serial uncorrelatedness include the
well known Q tests of Box and Pierce (1970) and Ljung and Box (1978), the robust Q∗

test of Lobato, Nankervis, and Savin (2001), the spectral tests of Durlauf (1991), and
the robust spectral test of Deo (2000). There are also tests of the martingale difference
hypothesis, including Bierens (1982, 1984), Bierens and Ploberger (1997), Hong (1999),
Dominguez and Lobato (2000), Whang (2000, 2001), Kuan and Lee (2004), and Park
and Whang (2005). For the hypothesis of serial independence, two leading tests are the
variance ratio test of Cochrane (1988) and the so-called BDS test of Brock, Dechert, and
Scheinkman (1987); see also Campbell, Lo, and MacKinlay (1997) and Brock, Dechert,
Scheinkman, and LeBaron (1996). Skaug and Tjostheim (1993), Pinkse (1998), and
Hong (1999) also proposed non-parametric tests of serial independence. In addition
to these tests, there are tests of time reversibility, which may also be interpreted as
tests of independence; see e.g., Ramsey and Rothman (1996) and Chen, Chou, and
Kuan (2000). It has been shown that a test of time reversibility is particularly powerful
against asymmetric dependence.

In this note we introduce various diagnostic tests for time series. We will not discuss
non-parametric tests because they are not asymptotically pivotal, in the sense that their
asymptotic distributions are data dependent. This note proceeds as follows. Section 2.1
focuses on the tests of serial uncorrelatedness. In Section 3, we discuss the tests of the
martingale difference hypothesis. Section 4 presents the variance ratio test and the BDS
test of serial independence. The tests of time reversibility are discussed in Section 5.
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2 Tests of Serial Uncorrelatedness

Given a weakly stationary time series {yt}, let µ denote its mean and γ(·) denote its
autocovariance function, where γ(i) = cov(ytyt−i) for i = 0, 1, 2, . . .. The autocorrelation
function ρ(·) is such that ρ(i) = γ(i)/γ(0). The series {yt} is serially uncorrelated if, and
only if, its autocorrelation function is identically zero.

2.1 Q Tests

As testing all autocorrelations is infeasible in practice, existing tests of serial uncorrelat-
edness focus on a given number of autocorrelations and ignore ρ(i) for large i. The null
hypothesis is

H0 : ρ(1) = · · · = ρ(m) = 0,

where m is a pre-specified number. Let ȳT denote the sample mean of yt, γ̂T (i) the i th

sample autocovariance:

γ̂T (i) =
1
T

T−i∑
t=1

(yt − ȳ)(yt+i − ȳ),

and ρ̂T (i) = γ̂(i)/γ̂(0) the i th sample autocorrelation. For notation convenience, we shall
suppress the subscript T and simply write ȳ, γ̂(i) and ρ̂(i). Writing ρm =

(
ρ(1), . . . , ρ(m)

)′,
the null hypothesis is ρm = o, and the estimator of ρm is ρ̂m =

(
ρ̂(1), . . . , ρ̂(m)

)′. Under
quite general conditions, it can be shown that as T tends to infinity,

√
T
(
ρ̂m − ρm

) D−→ N (o,V ),

where D−→ stands for convergence in distribution, and the (i, j) th element of V is

vij =
1

γ(0)2
[
ci+1,j+1 − ρ(i)c1,j+1 − ρ(j)c1,i+1 + ρ(i)ρ(j)c1,1

]
,

with

ci+1,j+1 =
∞∑

k=−∞
IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]−
IE
[
(yt − µ)(yt+i − µ)

]
IE
[
(yt+k − µ)(yt+k+j − µ)

]
;
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2.1 Q Tests 3

see e.g., Lobato et al. (2001). Fuller (1976, p. 256) presents for a different expression of
V .1 It follows from the continuous mapping theorem that

T
(
ρ̂m − ρm

)′
V −1

(
ρ̂m − ρm

) D−→ χ2(m). (2.1)

This distribution result is fundamental for the tests presented in this section.

Under the null hypothesis, V can be simplified such that vij = ci+1,j+1/γ(0)2 with

ci+1,j+1 =
∞∑

k=−∞
IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
.

In particular, when yt are serially independent,

ci+1,j+1 =

{
0, i �= j,

γ(0)2, i = j.

In this case, V is an identity matrix, and the normalized sample autocorrelations
√
T ρ̂(i),

i = 1, . . . ,m, are independent N (0, 1) random variables asymptotically. Many computer
programs now raw a confidence interval for sample autocorrelations so as to provide a
quick, visual check of the significance of ρ̂(i). For example, the 90% (95%) confidence
interval of ρ̂(i) is ±1.645/

√
T (±1.96/

√
T ). A joint test is

QT = T ρ̂′
mρ̂m = T

m∑
i=1

ρ̂(i)2 D−→ χ2(m), (2.2)

under the null hypothesis; QT is the well known Q test of Box and Pierce (1970).

When yt are independent random variables with mean zero, variance σ2, and finite
6 th moment, we have from a result of Fuller (1976, p. 242) that

cov
(√
T ρ̂(i),

√
T ρ̂(j)

)
=

{
T−i
T +O(T−1), i = j �= 0,
O(T−1), i �= j.

This result provides an approximation up to O(T−1). Then for sufficiently large T , the
diagonal elements of V are approximately (T − i)/T , whereas the off-diagonal elements
essentially vanish. This leads to the modified Q test of Ljung and Box (1978):

Q̃T = T 2
m∑

i=1

ρ̂(i)2

T − i

D−→ χ2(m), (2.3)

1Fuller (1976, p. 256) shows that the (i, j) th element of V is

vij =
∞∑

k=−∞
ρ(k)ρ(k − i + j)+ρ(k + j)ρ(k − i) − 2ρ(k)ρ(j)ρ(k − i) −

2ρ(k)ρ(i)ρ(k − j) + 2ρ(i)ρ(j)ρ(k)2.
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2.1 Q Tests 4

cf. (2.2). Clearly, the Box-Pierce Q test and the Ljung-Box Q̃ test are asymptotically
equivalent, yet the latter ought to have better finite-sample performance because it em-
ploys a finite-sample correction of V . In practice, the Ljung-Box Q statistic is usually
computed as

T (T + 2)
m∑

i=1

ρ̂(i)2

(T − i)
, (2.4)

which is of course asymptotically equivalent to (2.3).

Another modification of the Q test can be obtained by assuming that

IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
= 0, (2.5)

for each k when i �= j and for k �= 0 when i = j. Given this assumption, ci+1,j+1 = 0
when i �= j, but

ci+1,j+1 = IE
[
(yt − µ)2(yt+i − µ)2

]
.

when i = j. Under this assumption, V is diagonal with the diagonal element vii =
ci+1,i+1/γ(0)2, which can be consistently estimated by

v̂ii =
1
T

∑T−i
t=1 (yt − ȳ)2(yt+i − ȳ)2

[ 1
T

∑T
t=1(yt − ȳ)2]2

.

Then under the null hypothesis,

Q∗
T = T

m∑
i=1

ρ̂(i)2/v̂ii
D−→ χ2(m); (2.6)

Lobato et al. (2001) refer to this test as theQ∗ test. Note that the Q∗ test does not require
yt to be serially independent, in contrast with the Box-Pierce and Ljung-Box Q tests.
The Q∗ test is therefore more suitable for testing processes that are serially uncorrelated
but serially dependent, such as GARCH processes (see Example in Section 3.1.

Remark:

1. The asymptotic distribution of the Box-Pierce and Ljung-Box Q tests is derived
under the assumption that {yt} is serially independent. This distribution result
is also valid when {yt} is a martingale difference sequence (a precise definition
will be given in Section 3.1) with additional moment conditions. These Q tests
can also be interpreted as independence (or martingale-difference) tests with a
focus on autocorrelations. Although the Q∗ test does not require the independence
assumption, the condition (2.5) is difficult to verify in practice.
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2.2 The Spectral Tests 5

2. When the Q-type tests are applied to the residuals of an ARMA(p,q) model, the
asymptotic null distribution becomes χ2(m− p− q).

3. The asymptotic null distribution of the Q-type tests is valid provided that data
possess at least finite (4+ δ) th moment for some δ > 0. Many financial time series,
unfortunately, may not satisfy this moment requirement; see e.g., de Lima (1997).

2.2 The Spectral Tests

Instead of testing a fixed number of autocorrelations ρ(j), it is also possible to test if
ρ(j) are all zero:

H0 : ρ(1) = ρ(2) = · · · = 0.

Recall that the spectral density function is the Fourier transform of the autocorrelations:

f(ω) =
1
2π

∞∑
j=−∞

ρ(j)e−ijω, ω ∈ [−π, π],

where i = (−1)1/2. When the autocorrelations are all zero, the spectral density reduces
to the constant (2π)−1 for all ω. It is then natural to base a test of all autocorrelations
by comparing the sample counterpart of f(ω) and (2π)−1.

Let IT (ω) denote the periodogram, the sample spectral density, of the time series {yt}.
The difference between IT (ω) and (2π)−1 is

1
2π

⎛⎝ T−1∑
j=−(T−1)

ρ̂(j)e−ijω − 1

⎞⎠ .

Recall that exp(−ijω) = cos(jω) − i sin(jω), where sin is an odd function such that
sin(jω) = − sin(−jω), and cos is an even function such that cos(jω) = cos(−jω). Thus,

1
2π

⎛⎝ T−1∑
j=−(T−1)

ρ̂(j)e−ijω − 1

⎞⎠ =
1
π

T−1∑
j=1

ρ̂(j) cos(jω).

Integrating this function with respect to ω on [0, a], 0 ≤ a ≤ π, we obtain the cumulated
differences:

1
π

T−1∑
j=1

ρ̂(j)
sin(ja)
j

.

Consider now the normalized, cumulated differences:

DT (t) =

√
2T
π

m(T )∑
j=1

ρ̂(j)
sin(jπt)

j
,
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2.2 The Spectral Tests 6

where πt = a and m(T ) is less than T but grows with T at a slower rate.

Recall that a sequence of i.i.d. N (0, 1) random variables {εt} can approximate the
Brownian motion B via

WT (t) = ε0t+
√

2
π

T∑
j=1

εj
sin(jπt)

j
⇒ B(t), t ∈ [0, 1]

where ⇒ stands for weak convergence. Then,

WT (t) − tWT (1) =
√

2
π

T∑
j=1

εj
sin(jπt)

j
⇒ B0(t), t ∈ [0, 1], (2.7)

where B0 denotes the Brownian bridge. It can also be shown that when yt are condi-
tionally homoeskedastic,

√
T ρ̂(j), j = 1, . . . ,m, converge in distribution to independent

N (0, 1) random variables under the null hypothesis. In view of the approximation (2.7)
and the asymptotic normality of T 1/2ρ̂(j), we obtain

DT (t) ⇒ B0(t), t ∈ [0, 1]. (2.8)

The spectral tests proposed by Durlauf (1991) are constructed from taking various func-
tionals on DT .

Durlauf (1991) considered the following test statistics:
(1) the Anderson-Darling test:

ADT =
∫ 1

0

[DT (t)]2

t(1 − t)
dt⇒

∫ 1

0

[B0(t)]2

t(1 − t)
dt;

(2) the Cramér-von Mises test:

CVMT =
∫ 1

0
[DT (t)]2 dt⇒

∫ 1

0
[B0(t)]2 dt;

(3) the Kolmogorov-Smirnov test:

KST = sup |DT (t)| ⇒ sup |B0(t)|;

(4) the Kuiper test:

KuT = sup
s,t

|DT (t) −DT (s)| ⇒ sup |B0(t) −B0(s)|.

The limits of these test statistics are direct consequences of (2.8) and the continuous
mapping theorem. These limits are also the limits of the well-known goodness-of-fit tests
in the statistics literature, and their critical values have been tabulated in, e.g., Shorack
and Wellner (1986).
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A condition ensuring the result (2.8) is that
√
T ρ̂(j) are independent N (0, 1) asymp-

totically. Similar to the finding of Lobato et al. (2001), Deo (2000) noted that when yt are
conditionally heteroskedastic, the asymptotic variance of

√
T ρ̂(j) would be IE(y2

t y
2
t−j)/γ(0)

2.
In this case, (2.8) fails to hold because DT is not properly normalized; instead, DT

converges weakly to a different process. As a result, the limiting distributions of the
tests considered by Durlauf (1991) would have thicker right-tails under conditional het-
eroskedasticity and render these tests over-sized; that is, these tests reject too often under
the null hypothesis than they should. Deo (2000) proposed the following modification of
DT :

Dc
T (t) =

√
2T
π

m(T )∑
j=1

ρ̂(j)
v̂jj

sin(jπt)
j

,

where

v̂jj =
1

γ̂(0)

(
1

T − j

T−j∑
t=1

(yt − ȳ)2(yt+j − ȳ)2
)1/2

,

and γ̂(0) is the sample variance of yt. With additional regularity conditions, the Cramér-
von Mises test based on Dc

T has the same limit as the original CVMT test, i.e.,

CVMc
T =

∫ 1

0
[Dc

T (t)]2 dt⇒
∫ 1

0
[B0(t)]2 dt.

This modification is analogous to the Q∗ test of Lobato et al. (2001). The simulation
results of Deo (2000) demonstrate that the modified spectral test is indeed robust to
some series that are conditionally heteroskedastic.

3 Tests of the Martingale Difference Hypothesis

3.1 The Martingale Difference Hypothesis

Let {F t} denote a sequence of information sets such that Fs ⊆ F t for all s < t. Such a
sequence is known as a filtration. A sequence of integrable random variables {yt} is said
to be a martingale difference sequence with respect to the filtration {F t} if, and only if,
IE(yt | F t−1) = 0 for all t. When {yt} is a martingale difference sequence, its cumulated
sums, ηt =

∑t
s=1 ys, are such that IE(ηt | F t−1) = ηt−1 and form the process known

as a martingale. By the law of iterated expectations, a martingale difference sequence
must have mean zero. This implication is not restrictive, as we can always evaluate the
“centered” series {yt − IE(yt)} when yt have non-zero means.

c© Chung-Ming Kuan, 2005



3.1 The Martingale Difference Hypothesis 8

The concept of martingale difference can be related to time series non-predictability.
We say that {yt} is not predictable (in the mean-squared-error sense) if, and only if, there
is a filtration {F t} such that the conditional expectations IE(yt | F t−1) are the same as
the unconditional expectations IE(yt). That is, the conditioning variables in F t−1 do not
help improving the forecast of yt so that the best L2 forecast is not different from the naive
forecast. Clearly, this definition is equivalent to requiring {yt−IE(yt)} being a martingale
difference sequence with respect to {F t}. In the time series analysis, the information
sets F t are understood as the σ-algebras generated by Y t = {yt, yt−1, . . . , y1}. Many
practitioners believe that they can “beat the market” if they are able to predict future
returns. Examining the martingale difference property thus allows us to evaluate whether
a time series is indeed predictable.

It is easily verified that {yt} is a martingale difference sequence if, and only if, yt are
uncorrelated with h(Y t−1) for any measurable function h; i.e.,

IE[yt h(Y
t−1)] = 0. (3.1)

Taking h in (3.1) as the linear function, we immediately see that yt must be serially
uncorrelated with yt−1, . . . , y1. Thus, a martingale difference sequence must be serially
uncorrelated; the converse need not be true. For example, consider the following nonlinear
moving average process:

yt = εt−1εt−2(εt−2 + εt + 1),

where εt are i.i.d. N(0, 1) random variables. It is clear that corr(yt, yt−j) = 0 for all j,
yet {yt} is not a martingale difference process. Recall that a white noise is a sequence
of uncorrelated random variables that have zero mean and a constant variance. Thus,
a martingale difference sequence need not be a white noise because the former does not
have any restriction on variance or other high-order moments.

If {yt} is a sequence of serially independent random variables with zero mean, we
have

IE[yt h(Y
t−1)] = IE(yt) IE[h(Y t−1)] = 0,

so that {yt} is necessarily a martingale difference sequence. The converse need not be
true. To see this, consider a simple ARCH (autoregressive conditional heteroskedasticity)
process {yt} such that yt = v

1/2
t εt, where εt are i.i.d. random variables with mean zero

and variance 1, and

vt = a+ by2
t−1,
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9

with a, b > 0. It can be seen that {yt} is a martingale difference sequence, yet it is
serially dependent due to the correlaions among y2

t . We therefore conclude that serial
independence implies the martingale difference property which in turn implies serial
uncorrelatedness.

4 Tests of Serial Independence

We have seen that serial independence is a much more stringent requirement than the
martingale difference property. The ARCH example in Section 3.1, for instance, is a mar-
tingale difference sequence but serially dependent. Given that the ARCH and GARCH
(generalized ARCH) models are popular in financial applications, it is also of interest to
consider testing a special form of serial dependence, viz., the correlations among squared
returns. McLeod and Li (1983) suggested testing whether the first m autocorrelations
of y2

t are zero using a Q test. That is, one computes (2.3) or (2.4) with ρ̂(i) the sample
autocorrelations of y2

t : where

ρ̂(i) =
1
T

∑T−i
t=1 (y2

t −m2)(y2
t+i −m2)

1
T

∑T
t=1(y

2
t −m2)2

,

with m2 the sample mean of y2
t . The asymptotic null distributions of the resulting Q

test remains χ2(m). While the McLeod-Li test also checks a necessary condition of
serial independence, its validity requires an even stronger moment condition (finite 8 th

moment). The tests discussed below, on the other hand, focus on the i.i.d. condition which
is sufficient for serial independence. Failing to reject the null hypothesis is consistent with
serial independence, yet rejecting the null hypothesis does not imply serial dependence.

4.1 The Variance Ratio Test

The variance-ratio test of Cochrane (1988) is a convenient diagnostic test of the i.i.d.
assumption. Suppose that yt are i.i.d. random variables with mean zero and variance
σ2. Then for any k, var(yt + · · · + yt−k+1) is simply kσ2. Let σ̃2

k denote an estimator
of var(yt + · · · + yt−k+1) and σ̂2 the sample variance of σ2. Under the null hypothesis,
σ̃2

k/k and σ̂2 should be close to each other. The variance ratio test is simply a normalized
version of σ̃2

k/(kσ̂
2).

Let ηt be the partial sum of yi such that yt = ηt − ηt−1. Suppose there are kT + 1
observations η0, η1, . . . , ηkT . Define the sample average of yt as

ȳ =
1
kT

kT∑
t=1

(ηt − ηt−1) =
1
kT

(ηkT − η0).
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4.1 The Variance Ratio Test 10

The variance estimator of σ2 = var(ηt − ηt−1) is

σ̂2 =
1
kT

kT∑
t=1

(
ηt − ηt−1 − ȳ

)2
.

Under the i.i.d. null hypothesis,
√
kT (σ̂2−σ2) D−→ N (0, 2σ4). Consider now the following

estimator of σ2
k = var(ηt − ηt−k):

σ̃2
k =

1
T

T∑
t=1

(
ηkt − ηkt−k − kȳ

)2 =
1
T

T∑
t=1

[
k(ȳt − ȳ)

]2
,

where ȳt =
∑kt

kt−k+1 yi/k. Under the i.i.d. hypothesis, σ2
k = kσ2, so that

√
T (σ̃2

k − kσ2) D−→ N (0, 2k2σ4),

or equivalently,

1√
k

√
T (σ̃2

k − kσ2) =
√
kT

(
σ̃2

k

k
− σ2

)
=

√
kT

(
σ̃2

k

k
− σ̂2

)
+
√
kT
(
σ̂2 − σ2

)
D−→ N (0, 2kσ4).

While σ̂2 is both consistent and asymptotically efficient for σ2 under the null hypothe-
sis, σ̃2

k/k is consistent but not asymptotically efficient. Following Hausman (1978),2 we
conclude that σ̂2 must be asymptotically uncorrelated with σ̃2

k/k − σ̂2 and hence

√
kT

(
σ̃2

k

k
− σ̂2

)
D−→ N (0, 2(k − 1)σ4

)
.

It follows that

√
kT

(
σ̃2

k

kσ̂2
− 1
)

D−→ N (0, 2(k − 1)
)
.

Denote the ratio σ̃2
k/(kσ̂

2) as VR. The statistic

√
kT (VR − 1)/

√
2(k − 1) D−→ N (0, 1),

under the null hypothesis.

2Given the parameter of interest θ, let θ̂e be a consistent and asymptotically efficient estimator of

θ and θ̂c is a consistent estimator but not asymptotically efficient. Hausman (1978) showed that θ̂e is

asymptotically uncorrelated with θ̂c − θ̂e. For if not, there would exist a linear combination of θ̂e and

θ̂c − θ̂e that is asymptotically more efficient than θ̂e.
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4.2 The BDS Test 11

In practice, one may employ other estimators for the variance ratio test. For example,
σ2

k may be estimated by

σ̃2
k =

1
kT

kT∑
t=k

(
ηt − ηt−k − kȳ

)2
.

One may also correct the bias of variance estimators and compute

σ̂2 =
1

kT − 1

kT∑
t=1

(
ηt − ηt−1 − ȳ

)2
,

σ̃2
k =

1
M

kT∑
t=k

(
ηt − ηt−k − kȳ

)2
,

where M = (kT − k + 1)(1 − 1/T ). For more detailed discussion, we refer to Campbell,
Lo, and MacKinlay (1997).

4.2 The BDS Test

The BDS test of serial independence also checks whether a sequence of random vari-
ables are i.i.d. Let Y n

t = (yt, yt+1, . . . , yt+n−1). Define the correlation integral with the
dimension n and distance ε as:

C(n, ε) = lim
T→∞

(
T − n

2

)−1∑
∀s<t

Iε(Y
n
t ,Y

n
s ),

where Iε(Y
n
t , Y

n
s ) = 1 if the maximal norm ‖Y n

t − Y n
s ‖ < ε and 0 otherwise. The

correlation integral is a measure of the proportion that any pairs of n-vectors (Y n
t and

Y n
s ) are within a certain distance ε. If yt are indeed i.i.d., Y n

t should exhibit no pattern
in the n-dimensional space, so that C(n, ε) = C(1, ε)n. The BDS test is then designed
to check whether the sample counterparts of C(n, ε) and C(1, ε)n are sufficiently close.
Specifically, the BDS statistic reads

BT (n, ε) =
√
T − n+ 1(CT (n, ε) − CT (1, ε)n)/σ̂(n, ε),

where

CT (n, ε) =
(
T − n

2

)−1∑
∀s<t

Iε(Y
n
t ,Y

n
s ),

and σ̂2(n, ε) is a consistent estimator of the asymptotic variance of
√
T − n+ 1CT (n, ε);

see Brock et al. (1996) for details. The asymptotic null distribution of the BDS test is
N (0, 1).
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The performance of the BDS test depends on the choice of n and ε. There is, however,
no criterion to determine these two parameters. In practice, one may consider several
values of n and set ε as a proportion to the sample standard deviation sT of the data, i.e.,
ε = δsT for some δ. Common choices of δ are 0.75, 1, and 1.5. An advantage of the BDS
test is that it is robust to random variables that do not possess high-order moments. The
BDS test usually needs a large sample to ensure proper performance. Moreover, it has
been found that the BDS test has low power against various forms of nonlinearity; see,
e.g., Hsieh (1989, 1991, 1993), Rothman (1992), Brooks and Heravi (1999), and Brooks
and Henry (2000). In particular, the BDS test is not sensitive to certain class of self-
exciting threshold AR processes (Rothman, 1992) and neglected asymmetry in volatility
(Hsieh, 1991; Brooks and Henry, 2000; Chen and Kuan, 2002).

5 Tests of Time Reversibility

A different type of diagnostic test focuses on the property of time reversibility. A strictly
stationary process {yt} is said to be time reversible if its finite-dimensional distributions
are all invariant to the reversal of time indices. That is,

Ft1,t2,...,tn(c1, c2, . . . , cn) = Ftn,tn−1,...,t1(cn, cn−1, . . . , cn).

When this condition does not hold, {yt} is said to be time irreversible. Clearly, indepen-
dent sequences and stationary Gaussian ARMA processes are time reversible. Rejecting
the null hypothesis of time reversibility thus implies that the data can not be serially
independent. As such, the test of time reversibility can also be interpreted as a test of
serial independence.

Time irreversibility indicates some time series characteristics that can not be de-
scribed by the autocorrelation function. When {yt} is time reversible, it can be shown
that for any k, the marginal distribution of yt − yt−k must be symmetric about the the
origin; see e.g., Cox (1981) and Chen, Chou, and Kuan (2000). That is, yt − yt−k and
yt−k − yt should have the same distributions for each k. If this symmetry condition fails
for some k, there is some asymmetric dependence between yt and yt−k, in the sense that
the effect of yt−k on yt is different from that of yt on yt−k. In view of this property,
we infer that nonlinear time series are time irreversible in general. Indeed, Tong (1990)
states that “time irreversibility is the rule rather than the exception when it comes to
nonlinearity” (p. 197). Moreover, linear and stationary processes with non-Gaussian in-
novations are typically time irreversible. Thus, testing time reversibility can complement
existing tests of independence.
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Existing tests of time reversibility aim at symmetry of yt−yt−k. A necessary condition
of distribution symmetry is its third central moment being zero. One may then test time
reversibility by evaluating whether the sample third moment is sufficiently close to zero.
Observe that by stationarity,

IE(yt − yt−k)
3 = IE(y3

t ) − 3 IE(y2
t yt−k) + 3 IE(yty

2
t−k) − IE(y3

t−k)

= −3 IE(y2
t yt−k) + 3 IE(yty

2
t−k),

where the two terms on the right-hand side are referred to as the bi-covariances. Ramsey
and Rothman (1996) base their test of time reversibility on the sample bi-covariances.
Note that both the third-moment test and bi-covariance test require the data to possess
at least finite 6 th moment. Unfortunately, most financial time series do not satisfy this
moment condition. On the other hand, Chen, Chou and Kuan (2000) consider a different
testing approach that is robust to the failure of moment conditions.

It is well known that a distribution is symmetric if, and only if, the imaginary part
of its characteristic function is zero. Hence, time reversibility of {yt} implies that

hk(ω) := IE
[
sin
(
ω(yt − yt−k)

)]
= 0, for all ω ∈ R

+. (5.1)

Note that (5.1) include infinitely moment conditions indexed by ω. Let g be a positive
function such that

∫
g(ω) dω < ∞. By changing the orders of integration, (5.1) implies

that ∫
R+

hk(ω)g(ω) dω =
∫

R

(∫
R+

sin
(
ω(yt − yt−k)

)
g(ω) dω

)
dF = 0,

where F is the distribution function of yt. This condition is equivalent to

IE[ψg(yt − yt−k)] = 0, (5.2)

where

ψg(yt − yt−k) =
∫

R+

sin
(
ω(yt − yt−k)

)
g(ω) dω.

To test (5.2), Chen, Chou, and Kuan (2000) suggest using the sample average of ψg(yt −
yt−k):

Cg,k =
√
Tkψ̄g,k/σ̄g,k, (5.3)

where Tk = T − k with T the sample size, ψ̄g,k =
∑T

t=k+1 ψg(yt − yt−k)/Tk, and σ̄2
g,k is

a consistent estimator of the asymptotic variance of
√
Tkψ̄g,k. A suitable central limit

theorem then ensures that Cg,k is asymptotically distributed as N (0, 1) under the null
hypothesis (5.2).
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A novel feature of this test is that, because ψg(·) is bounded between 1 and −1, no
moment condition is needed when the central limit theorem is invoked. Yet a major
drawback of Cg,k is that the null hypothesis (5.2) is only a necessary condition of (5.1).
Thus, hk may be integrated to zero by some g function even when hk is not identically
zero. For such a g function, the resulting Cg,k test does not have power against asymmetry
of yt − yt−k. Choosing a proper g function is therefore crucial for implementing this test.
Chen, Chou, and Kuan (2000) observed that for absolutely continuous distributions,
hk(ω) is a damped sine wave and eventually decays to zero as ω → ∞; see, e.g., Figure ??

for hk of various “centered” exponential distributions. This suggests choosing g as the
density function of a random variable on R

+. In particular, when g is the density of the
exponential distribution (g = exp) with the parameter β > 0, i.e., g(ω) = exp(−ω/β)/β,
it can be shown that ψg has an analytic expression:

ψexp(yt − yt−k) =
β(yt − yt−k)

1 + β2(yt − yt−k)2
. (5.4)

The closed form (5.4) renders the computation of Cexp,k test quite easy. One simply plugs
the data into (5.4) and calculates their sample average and sample standard deviation.
The test statistic is now readily computed as (5.3). Chen, Chou, and Kuan (2000)
demonstrate that the Cexp,k test performs strikingly well in finite samples and is very
robust to the data without higher-order moments. The third-moment-based test and the
bi-covariance test, on the other hand, have little power when the data do not have proper
moments.

Apart from computation simplicity, the Cexp,k test is very flexible. By varying the
value of β, Cexp,k is able to check departures from (5.2) in different ways. When β is
small, this test concentrates on hk(ω) for smaller ω. By contrast, more hk(ω) can be
taken into account as β increases. How to choose an optimal β that maximizes the test
power remains an unsolved problem, however.

Remarks:

1. One may consider testing a condition equivalent to (5.1). For example, a Cramér-
von Mises type condition is based on∫

R+

hk(ω)2g(ω) dω,

which is zero if, and only if, (5.1) holds. This condition, however, does not permit
changing the orders of integration. The resulting test is more difficult to implement
and usually has a data-dependent distribution.
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2. To apply the test (5.3) to model residuals, Chen and Kuan (2002) noted that one
must compute the sample standard deviation with care. Chen and Kuan (2002)
also demonstrated that the Cexp,k test is particularly powerful against asymmetric
dependence in data, but other diagnostic tests are not. Specifically, they simulated
data from an EGARCH process which exhibits volatility asymmetry but estimated
a GARCH model which is a model of symmetric volatility pattern. It is shown that
the Cexp,k test on the standardized GARCH residuals can reject the null hypothesis
of time reversibility with high probability, yet the Q-type tests and the BDS test
have low power and fail to reject the null hypothesis of serial uncorrelatedness
(independence). As far as model diagnostic is concerned, the latter tests are unable
to distinguish between GARCH and EGARCH models.
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