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1 Introduction

To draw inferences from econometric studies, it is desirable to know the exact distributions

of a parameter estimator and the associated test statistics. Yet, it is typically difficult to

derive such distributions in practice. Researchers thus resort to approximations based on

asymptotic distributions. For example, χ2 distributions are used to approximate the null

distributions of the standard large-sample tests, such as the Wald, LM and LR tests. A

major problem with this approach is that an asymptotic distribution may provide a rather

poor approximation to its finite-sample counterpart in many applications.

Efron (1979, 1982) introduce an alternative approach, namely, bootstrap, that offers

convenient and quite accurate approximations. The bootstrap method treats the empirical

distribution (or the fitted distribution) of sample data as the true distribution and obtains

bootstrapped samples by re-sampling from this distribution. The exact distribution of

a statistic is then approximated by the empirical distribution of the statistic, computed

using the bootstrapped samples. This note is a brief introduction to the basic idea of

bootstrap. Some materials in this note are taken freely from Efron (1982), Hall (1992),

and Horowitz (2001).

2 Background

Let Xn = {X1, X2, ..., Xn} denote the collection of n independently and identically dis-

tributed (i.i.d.) random variables with the unknown distribution function F , which is in

the family of distribution functions F . Let R(Xn) denote a statistic based on Xn and

Hn(·,F ) be its distribution function:

Hn(a,F ) = PF

[
R(Xn) ≤ a

]
.

The statistic R(Xn) is said to be a pivot if Hn(a,F ) are identical for all F ∈ F .

Example 2.1 Suppose that Xi have the common distribution N (µ, σ2), so that F (a) =

Φ
(
(a − µ)/σ

)
, where Φ is the distribution function of N (0, 1). Let µ̂(Xn) =

∑n
i=1 Xi/n

be the estimator of µ and σ̂2(Xn) =
∑n

i=1

(
Xi − µ̂(Xn)

)2
/(n− 1) be the estimator of σ2.

To construct a confidence interval of µ, we utilize the following statistic:

R(Xn) =
µ̂(Xn)− µ√

σ̂2(Xn)
n

.
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It is well known that R(Xn) is a pivot because it has the t(n− 1) distribution whenever

F is normal. Then, given the confidence level 0 < α < 1,

PF

[
tn−1, 1−α

2
< R(Xn) < tn−1, 1+α

2

]
= α,

where tn−1,s is the s-th quantile of the t(n−1) distribution. It is straightforward to derive

the exact confidence interval of µ as(
µ̂(xn) + tn−1, 1−α

2

σ̂(xn)√
n

, µ̂(xn) + tn−1, 1+α
2

σ̂(xn)√
n

)
,

where xn is the realization of Xn.

When R(Xn) is not a pivot, Hn(·,F ) is usually unknown because F is unknown.

Suppose that R(Xn) converges in distribution to RA(F ), a random variable with the

distribution function HA(·,F ). We have

lim
n→∞

Hn(a,F ) = HA(a,F ), (1)

for every a that is a continuity point of HA(·,F ). Given the convergence in distribution

in (1), it is quite common to approximate Hn(·,F ) by HA(·,F ). R(Xn) is said to be an

asymptotic pivot if its limiting distribution function HA(·,F ) does not depend on F .

Example 2.2 Suppose that Xi are i.i.d. with finite second moment. Without normality,

the distribution of R(Xn) in Example 2.1 is not t(n−1) and depends on F in general. On

the other hand, it is well known that R(Xn) is an asymptotic pivot because it converges

in distribution to N (0, 1) for all F with finite second moment. Thus, we can use the

distribution function of N (0, 1), Φ, to approximate the distribution function of R(Xn),

Hn(·,F ). Given the confidence level 0 < α < 1,

PF

[
q 1−α

2
< R(Xn) < q 1+α

2

]
≈ α,

from which the approximated confidence interval of µ can be derived as:(
µ̂(xn) + q 1−α

2

σ̂(xn)√
n

, µ̂(xn) + q 1+α
2

σ̂(xn)√
n

)
,

where qs is the s-th percentile of the standard normal distribution.
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3 Basic Idea of Bootstrap

When it is difficult to construct a pivot or an asymptotic pivot, other approximation

methods are needed. The bootstrap method of Efron (1979) suggests to replace F with

F̂ n, the empirical distribution function based on the realization xn, and use Hn(·, F̂ n)

to approximate Hn(·,F ). This results in a good approximation because F̂ n usually well

approximates F .

There are parametric and nonparametric methods to compute F̂ n. Given the para-

metric form of F , suppose that F is determined by the parameters m ∈ M ⊆ Rk, so that

F = {F (·,m)|m ∈ M}. Let m̂(xn) be an estimator of m. The parametric, empirical

distribution function is such that F̂ n(a) = F (a, m̂(xn)). For example, when F is the nor-

mal distribution function with mean µ and variance σ2, F̂ n(a) = Φ
(
(a− µ̂(xn))/σ̂(xn)

)
,

where µ̂(xn) and σ̂2(xn) are the estimators of µ and σ2, respectively. Write F ∗ := F̂ n

and let X∗
i be i.i.d. random variables with the distribution function F ∗. The distribution

function of R(X∗
n) is then

Hn(a,F ∗) = Hn(a, F̂ n) = PF ∗
[
R(X∗

n) ≤ a
]
.

Unlike F , F ∗ is known by construction. It follows that Hn(·,F ∗), the bootstrap distri-

bution function of R(Xn), is also known and can be used to approximate Hn(·,F ). The

following examples illustrate the parametric method.

Example 3.1 Given Xn and R(Xn) in Example 2.1, we construct a confidence interval

of µ using the bootstrap method. The parametric, empirical distribution function is

F ∗(a) = Φ
(
(a − µ̂(xn))/σ̂(xn)

)
. Let X∗

n = {X∗
1 , X∗

2 , ..., X∗
n} be i.i.d. random variables

with the distribution F ∗ and

R(X∗
n) =

µ̂∗(X∗
n)− µ̂(xn)√
σ̂2
∗(X

∗
n)

n

,

where µ̂∗(X∗
n) =

∑n
i=1 X∗

i /n and σ̂2
∗(X

∗
n) =

∑n
i=1

(
X∗

i − µ̂∗(X∗
n)

)2
/(n − 1). The distri-

bution of R(Xn) is t(n− 1), and so is the distribution of R(X∗
n) because F ∗ is a normal

distribution function. Thus, the distribution function Hn(·,F ∗) agrees with Hn(·,F ).

Given the confidence level 0 < α < 1, we have

PF

[
tn−1, 1−α

2
< R(Xn) < tn−1, 1+α

2

]
= PF ∗

[
tn−1, 1−α

2
< R(Xn) < tn−1, 1+α

2

]
= α.

c© C.-M. Kuan, 2008, 2009



4

The confidence interval of µ based on the bootstrap method is thus exact, as in Exam-

ple 2.1. This should not be surprising because R(Xn) is a pivot when Xi are i.i.d. normally

distributed.

Example 3.2 Given Xn in Example 3.1, we now consider R(Xn) =
√

n(µ̂(Xn) − µ),

whose distribution function is Hn(a,F ) = Φ(a/σ) and depends on σ, a parameter of

F . As in the previous example, F ∗(a) = Φ
(
(a − µ̂(xn))/σ̂(xn)

)
. Thus, R(X∗

n) has the

distribution function Hn(·,F ∗) = Φ
(
a/σ̂(xn)

)
. Given the confidence level 0 < α < 1,

PF

[
q 1−α

2
σ < R(Xn) < q 1+α

2
σ
]

= α,

which can be approximated by

PF ∗

[
q 1−α

2
σ̂(xn) < R(Xn) < q 1+α

2
σ̂(xn)

]
.

The approximated confidence interval of µ is thus(
µ̂(xn) + q 1−α

2

σ̂(xn)√
n

, µ̂(xn) + q 1+α
2

σ̂(xn)√
n

)
.

If the MLE σ̌2(xn) =
∑n

i=1

(
xi − µ̂(xn)

)2
/n is used to estimate σ2, F ∗(a) = Φ

(
(a −

µ̂(xn))/σ̌(xn)
)
. The resulting approximated confidence interval of µ is(

µ̂(xn) + q 1−α
2

σ̌(xn)√
n

, µ̂(xn) + q 1+α
2

σ̌(xn)√
n

)
.

This shows that the parametric bootstrap method depends not only on the choice of

R(Xn) but also on the estimator of parameters.

In practice, the parametric form of F is rarely known, and a nonparametric bootstrap

method that does not require prior information of F is more desirable. The nonparametric

method is based on the following empirical distribution function:

F̂ n(a) =
1
n

]{xi ≤ a, i = 1, . . . , n}. (2)

Let X∗
i be i.i.d. random variables with the distribution function F ∗ = F̂ n given in (2).

We again rely on X∗
n to construct R(X∗

n) and use the distribution function Hn(·,F ∗) to

approximate Hn(·,F ).

Example 3.3 Given Xn and R(Xn) in Example 2.2, we now use the nonparametric

bootstrap method to construct the confidence interval of µ. For X∗
n with the distribution
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F ∗ in (2), we calculate all possible values of R(X∗
n) over nn different combinations of the

realizations of x∗n = {x∗1, x∗2, ..., x∗n}, and each value is assigned a probability 1/nn. Then,

Hn(a,F ∗) =
1
nn

]
{
R(x∗n) ≤ a, for all xn

}
.

Given the confidence level 0 < α < 1, the approximated confidence interval of µ is deter-

mined by

PF ∗

[
p∗1−α

2

< R(Xn) < p∗1+α
2

]
,

which leads to(
µ̂(xn) + p∗1−α

2

σ̂(xn)√
n

, µ̂(xn) + p∗1+α
2

σ̂(xn)√
n

)
,

where p∗s is the s-th quantile of Hn(·,F ∗).

4 Asymptotic Results

We say that Hn(·, F̂ n) is consistent for HA(·,F ) if for every ε > 0 and F ∈ F ,

lim
n→∞

PF

[
sup

a
|Hn(a, F̂ n)−HA(a,F )| > ε

]
= 0.

To establish such consistency, Beran and Ducharme (1991) suggest the following condi-

tions.

1. For every ε > 0 and F ∈ F , F̂ n is such that limn→∞ PF

[
supa |F̂ n(a)−F (a)| > ε

]
=

0.

2. For each F ∈ F , HA(·,F ) is a continuous function.

3. For every a and any sequence {Gn} ∈ F such that limn→∞Gn(a) = F (a), we have

limn→∞Hn(a,Gn) = HA(a,F ).

Note that these conditions do not require knowledge of the distribution function F .

By Polya’s Theorem,1 conditions (ii) and (iii) ensure the following uniform convergence:

lim
n→∞

sup
a
|Hn(a,Gn)−HA(a,F )| = 0.

1Let FXn and FX denote the distribution functions of Xn and X, respectively. Polya’s theorem asserts

that, if Xn converges in distribution to X and FX is continuous, then limn→∞ supa |FXn(a)−FX(a)| = 0.

That is, FXn(a) converges to FX(a) uniformly in a.
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Then for F̂ n satisfying condition (i), we have

lim
n→∞

PF

[
sup

a
|Hn(a, F̂ n)−HA(a,F )| > ε

]
= 0.

That is, Hn(·, F̂ n) is consistent for HA(·,F ). When R(Xn) converges in distribution to

RA(F ), we have pointwise convergence of Hn(a,F ) to HA(a,F ), as in (1). Polya’s theorem

ensures this convergence is uniform when HA(·,F ) is continuous. These results together

yield

lim
n→∞

PF

[
sup

a
|Hn(a, F̂ n)−Hn(a,F )| > ε

]
= 0. (3)

That is, Hn(·, F̂ n) can well approximate Hn(·,F ) when n is sufficiently large. For more

discussions of asymptotic results, see Horowitz (2001).

Remark: The Glivenko-Cantelli theorem ensures that the nonparametric empirical distri-

bution function (2) satisfies condition (i) above and hence can serve as F̂ n.2 This justifies

why the nonparametric bootstrap method works.

5 Bootstrap with Re-Sampling

We now describe how the bootstrap method can be implemented in practice. Example 3.3

shows that it is computationally formidable to calculate the bootstrap distribution. For

example, when n is as small as 10, we need to compute 1010 (10 billion) different values

for R(X∗
n). If R(X∗

n), such as t statistic, takes the same value regardless of the order of

x∗i , the required computation would be easier but still needs C2n−1
n values of R(X∗

n). The

number C2n−1
n still grows much too fast when n becomes large.

As far as computation is concerned, re-sampling makes the bootstrap method com-

putationally more tractable. When Xn contains n i.i.d. random variables, we can obtain

another random sample by re-sampling from the realization xn. To this end, we randomly

draw n observation from {x1, x2, ..., xn} with replacement and denote the b-th re-sampled

observation as x∗n,b = (x∗1,b, x
∗
2,b, ..., x

∗
n,b), b = 1, 2, ..., B. The statistic R(x∗n,b) is a realiza-

tion based on F ∗, the empirical distribution of xn. We can then compute the empirical

distribution function of R(x∗n) based on the bootstrapped realizations as

H̃n,B(a,F ∗) =
1
B

]
{
R(x∗n,b) ≤ a, b = 1, . . . , B

}
.

2Let F be the true distribution function and bF n be the nonparametric empirical distribution function.

The Glivenko-Cantelli theorem asserts that limn→∞ supa |F (a)− F n(a)| = 0 almost surely.

c© C.-M. Kuan, 2008, 2009
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Table 1: The coverage rates of the bootstrap and asymptotic methods.

n = 10 n = 20 n = 50 n = 100

F Boot Asymp Boot Asymp Boot Asymp Boot Asymp

eN (0,1) 0.9074 0.8060 0.9192 0.8498 0.9280 0.8910 0.9346 0.9162

t(5) 0.9396 0.9256 0.9338 0.9296 0.9434 0.9490 0.9408 0.9454

t(8) 0.9430 0.9168 0.9458 0.9414 0.9470 0.9478 0.9460 0.9494

t(11) 0.9436 0.9194 0.9460 0.9368 0.9494 0.9478 0.9506 0.9498

Again by the Glivenko-Cantelli theorem,

lim
B→∞

sup
a
|H̃n,B(a,F ∗)−Hn(a,F ∗)| = 0,

almost surely. Thus, the bootstrap method with re-sampling works because H̃n,B(·,F ∗)

can approximate Hn(·,F ∗) to any desired degree of accuracy when B is sufficiently large,

and Hn(·,F ∗) in turn approximates Hn(·,F ) arbitrarily well when n is large enough.

Example 5.1 Following Example 2.1, we simulate the coverage rates of 95% confidence

intervals of µ for the data with the distribution F . We compare the performance of the

bootstrap and asymptotic methods. We consider four different distributions: log-normal

(exp(N (0, 1))), t(5), t(8) and t(11), and four sample sizes n=10,20, 50 and 100. The

number of replications is 5000, and the number of bootstrap B = 1000. The results are

summarized in Table 1. It can be seen that the bootstrap method provides very good

approximation for all cases considered and outperforms the asymptotic method when the

sample size is small. In particular, for the log-normal distribution which has increasingly

large moments, the bootstrap method clearly dominates the asymptotic method.

Example 5.2 This example illustrates the procedures for computing the coverage prob-

abilities of the confidence intervals for regression coefficients. The regression data yi are

generated according to:

yi = α + βxi + εi, i = 1, . . . , n,

where xi are i.i.d. standard normal random variables and εi are i.i.d. t(5) random variables.

We set n = 30, α = 1 and β = 1.

c© C.-M. Kuan, 2008, 2009
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The asymptotic method for approximating the coverage rate of β is described below;

the coverage rate of α can be approximated similarly.

A1. Generate the data (yi, xi), i = 1, . . . , n, as discussed above.

A2. Regress yi on 1 and xi to obtain the OLS estimates α̂ and β̂, the OLS residuals

êi = yi − α̂− β̂xi, and the estimated standard deviations σ̂α̂ and σ̂β̂ . Specifically,

σ̂β̂ =

√ ∑n
i=1 ê2

i

n
[∑n

i=1(xi − x̄)2
] .

A3. Construct a two-sided 95% confidence interval for β = 1 based on the asymptotic

distribution of β̂:

CIAM =
(
β̂ − q0.975 σ̂β̂ , β̂ + q0.975 σ̂β̂

)
,

with q0.975 the 0.975 quantile of the standard normal distribution.

A4. Set AMβ
r = 1 if β = 1 is in CIAM ; otherwise, AMβ

r = 0.

Repeat these steps R times (say, R = 5000) and calculate the percentage of AMβ
r = 1.

The nonparametric bootstrap method for approximating the coverage rate of β is

described below; the coverage rate of α can be approximated similarly.

B1. Generate the data (yi, xi), i = 1, . . . , n, as discussed above.

B2. Regress yi on 1 and xi and calculate the OLS estimates α̂ and β̂ and their estimated

standard deviations σ̂α̂ and σ̂β̂ as in A2 above.

B3. Compute the bootstrapped confidence interval:

(i) Generate random indices from a uniform distribution over {1, .., n} with re-

placement, denoted as {kb
1, ..., k

b
n}.

(ii) Regress {ykb
1
, ..., ykb

n
} on a constant term and {xkb

1
, ..., xkb

n
} to obtain β̂∗b and

the estimated standard deviation σ̂β̂∗b
. Compute the Studentized bootstrap

statistic:

R̂∗b :=
β̂∗b − β̂

σ̂β̂∗b

,

where σ̂β̂∗b
is computed as σ̂β̂ using the b-th bootstrapped sample.3

3Alternatively, one may compute R̂∗b as (β̂∗b − β̂)/σ̂β̂ .
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(iii) Repeat the steps (i) and (ii) for b = 1, ..., B (say, B = 1000) and rank the

absolute value of R̂∗b in an ascending order to form {R̂∗r1
, ..., R̂∗rB

}.

(iv) The symmetric, bootstrapped 95% confidence interval for β is:

CIBM,1 =
(
β̂ − p∗0.95 σ̂β̂, β̂ + p∗0.95 σ̂β̂

)
,

where p∗0.95 is the 0.95 quantile of {R̂∗r1
, ..., R̂∗rB

}.

B4. Set BMβ
r = 1 if β = 1 is in CIBM,1; otherwise, BMβ

r = 0.

Repeat these steps R times and calculate the percentage of BMβ
r = 1.

There are different ways to construct a symmetric, bootstrapped confidence interval

of β. For examples, the following confidence interval is also valid:

CIBM,2 =
(
β̂ − p∗0.95 ŝβ̂∗ , β̂ + p∗0.95 ŝβ̂∗

)
,

where ŝβ̂∗ is the sample standard deviation of {β̂∗b }B
b=1, i.e.,

ŝ2
β̂∗

=
1
B

B∑
b=1

(
β̂∗b − β̂∗

)2
, β̂∗ =

B∑
b=1

β̂∗b /B.

One may also compute the confidence interval as

CIBM,3 =
(
β̂ − p̃∗0.95, β̂ + p̃∗0.95

)
,

where p̃∗0.95 is the 0.95 quantile of the non-Studentized statistics β̂∗b − β̂.

6 Stationary Bootstrap

The bootstrap method described in Section 5 is not valid for serially dependent data, for

the independent draws in re-sampling destroys the dependence structure of the data. In

this section, we introduce the stationary bootstrap of Politis and Romano (1994) that is

applicable to stationary and weakly dependent data. In this method, observations are

re-sampled in blocks of random size, where the size of each block is determined by a

geometric distribution, so as to preserve the dependence in the original series.

Given the data xn = (x1, . . . , xn) and the real number 0 < Q < 1, the re-sampling

scheme of stationary bootstrap can be implemented as follows.

c© C.-M. Kuan, 2008, 2009
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S1. Randomly select an observation, say xt, from the data xn as the first bootstrapped

observation x∗1,b.

S2. with probability Q, x∗2,b is set to xt+1, the observation following the previously sam-

pled observation,4 and with probability 1−Q, the second bootstrapped observation

x∗2,b is randomly selected from the original data xn.

S3. Repeat the second step to form x∗n,b, the b-th bootstrapped sample with n observa-

tions.

In this scheme, the block size is the (random) number of bootstrapped observations that

are drawn consecutively. It can be shown that the block size indeed follows a geometric

distribution with parameter Q, so that the expected block size is 1/(1 − Q). Clearly,

bootstrapped results depend on the choice of Q. When Q approaches zero, the resulting

stationary bootstrap is like i.i.d. bootstrap.

Let x̄n be the sample average of xn and x̄∗n,b the average of the b-th bootstrapped

sample x∗n,b. To discuss the asymptotic property of stationary bootstrap, we shall denote

the probability Q as Q(n) to signify its dependence on the sample size n. The following

result, due to Goncalves and de Jong (2003), holds under mild moment and dependence

conditions on the data.5

Theorem 6.1 Given strictly stationary and weakly dependent process {Xt}, suppose that

Q(n) → 1 and n(1−Q(n))2 →∞. Then for any ε > 0,

P
[
sup
a∈R

∣∣P∗[√n(X̄∗
n − X̄n) ≤ a]− P[

√
n(X̄n − µ) ≤ a]

∣∣ > ε
]
→ 0,

where µ = IE(Xt) and P∗ is the probability measure generated by stationary bootstrap.

Remark: Theorem 6.1 holds for more general statistics R(Xn). Intuitively, the larger

the expected block size (the larger the Q), the better can such re-sampling preserve the

dependence structure in the data. Yet, when the expected block size is too big, the boot-

strapped samples would have smaller variation and hence result in poor approximation.

In Theorem 6.1, a proper expected block size is controlled by the conditions Q(n) → 1

and n(1−Q(n))2 →∞.
4The first observation x1 is treated as the observation following the last observation xn in re-sampling.
5Specifically, Goncalves and de Jong (2003) assume that the data {Xt} is strictly stationary and α-

mixing of size −2(2 + δ)(r + δ)/(r − 2), for some r > 2 and δ > 0, where IE|Xt|r+δ < ∞.
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Example 6.1 As in Example 5.1, we examine the performance of i.i.d. bootstrap and

stationary bootstrap by simulating the coverage rates of 95% confidence intervals of the

mean. Suppose Xt follows an AR(1) process such that

Xt = ρXt−1 + εt, t = 1, 2, ..., (4)

where |ρ| < 1 and εt are i.i.d. standard normal. When |ρ| 6= 0, Xt are stationary and

weakly dependent process, and when ρ = 0, Xt = εt are i.i.d. standard normal.

In our simulations, we set n = 200 and generate n + 100 Xt’s according to (4) with

X0 = 0. The last n generated observations are retained as our sample; ignoring the first

100 data points can reduce the effect of initial value on the generated sample. We consider

ρ = 0, 0.3, 0.6, and 0.9 and Q = 0, 0.5, 0.7, 0.9, and 0.95; note that the stationary

bootstrap simplifies to i.i.d. bootstrap when Q = 0. The number of replications is 5000,

and the number of bootstrap B = 1000. The results are summarized in Table 2.

It is not surprising to see that stationary bootstrap performs worse than i.i.d. bootstrap

when there is no dependence in the data. Yet, the difference is minor if Q is not too

big. When the data are serially correlated, it can be seen that, for any Q, the coverage

rate of the stationary bootstrapped confidence interval is higher than those based on

i.i.d. bootstrap (Q = 0); the difference could be very substantial when correlation is

strong. This illustrates the importance of a bootstrap method that can take into account

data dependence. Note also that the bootstrapped coverage rates are all smaller than

the nominal coverage rate (0.95) when ρ 6= 0. For a given Q, the difference between

bootstrapped and nominal coverage rates are larger when ρ is larger. A reason for this

observation is that n = 200 may be too small relative to ρ. Hence, better approximation

of stationary bootstrap would be obtained when the sample becomes larger.
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