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Abstract
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1 Introduction

Consistent estimation of asymptotic covariance matrix is crucial in constructing tests of

parameters. A leading class of consistent estimators for covariance matrix, also known as

the heteroskedasticity and autocorrelation consistent estimator (henceforth HAC estima-

tor), is the nonparameteric kernel estimator advocated by Newey and West (1987) in the

econometrics literature. It has been found that the kernel HAC estimator is negatively

biased, and hence the resulting test is typically over-sized in finite samples.

To improve on the performance of the kernel estimator, much research effort has

been devoted to determine a better kernel function or its bandwidth (truncation lag);

see, e.g., Andrews (1991), Newey and West (1994), and Phillips et al. (2005). It has

also been found that the kernel estimator with pre-whitened estimands performs quite

well (Andrews and Monahan, 1992). Yet, the potential benefit of using other residuals

has not been investigated. This paper proposes computing HAC estimators based on

one-step-ahead forecast errors (FEs), instead of the OLS residuals, so as to mitigate the

estimation effect in residuals. We show that the FE-based HAC estimator is consistent

but has smaller bias than other HAC estimators. As a result, the tests that depend on

this estimator have more accurate finite-sample sizes, but it does not suffer from power

loss, in contrast with the robust tests of Kiefer et al. (2000, henceforth KVB).

This paper proceeds as follows. We study the FE-based HAC estimator in Section 2

and present the simulation results in Section 3. Section 4 concludes.

2 The HAC-FE estimator

Given the linear specification yt = x′
tβo + εt , t = 1, ..., T , and the least square estimator

β̂T , the asymptotic covariance matrix of T 1/2(β̂T − βo) is M−1
xx V oM

−1
xx , where Mxx is

the probability limit of T−1
∑T

t=1 xtx
′
t and V o = limT→∞ var

(
T−1/2

∑T
t=1 xtεt

)
. When

vt = xtεt are weakly dependent and heterogeneously distributed, a leading consistent

estimator of V o is the kernel HAC estimator:

V̂ T =
T∑

j=−T

κ

(
j

ST

)[ 1
T

T∑
t=1

xtêtêt+jx
′
t+j

]
,

where κ is a kernel function, ST is the bandwidth, and êt is the OLS residual. Typically,

as this estimator is negatively biased, the resulting tests are over-sized in finite samples.

To improve on the performance of V̂ T , much research interest has been devoted to the

choice of kernel function and its bandwidth.
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Other than the kernel function and its bandwidth, note that conceivable that the

estimation effect in êt is also responsible for the bias of V̂ T . In fact, while xtêt must

sum to zero, a consequence of OLS estimation, xtεt are not subject to this constraint.

This motivates us to consider other residuals that can circumvent such restriction. A

candidate is the recursive residual proposed by Brown, Durbin, and Evans (1975):

ût =
(
yt − x′

tβ̃t−1

)
/

√
1 + x′

t

(∑t−1
i=1xix

′
i

)−1
xt,

where β̃t−1 is the recursive OLS estimator based on the subsample of first t − 1 obser-

vatons. Note that
∑T

t=1 xtût 6= 0. Moreover, ût can be interpreted as the martingale

transformation of Khmaladze (1981) that eliminates the estimation effect (Bai, 2003).

However, this interpretation is valid only under certain conditions (e.g., i.i.d. normality

of error term). Also, the complex normalizing factor in the recursive residuals may have

an adverse effect on the resulting HAC estimator, as will be seen in our simulations. We

thus propose using the “non-standardized” version of recursive residuals, namely, the

one-step-ahead FEs: ẽt = yt−x′
tβ̃t−1. Clearly,

∑T
t=1 xtẽt 6= 0. In what follows, the HAC

estimator based on ẽt, denoted as Ṽ T , will be referred to as the HAC-FE estimator, and

the HAC estimators based on the OLS and recursive residuals will be referred to as the

HAC-OLS and HAC-BDE estimators, respectively.

We now briefly discuss the consistency of Ṽ T . Similar to the OLS-residual-based

V̂ T , the kernel function κ for Ṽ T is assumed to be continuous such that κ(0) = 1,

|κ(x)| ≤ 1 for all x in R, κ(x) = κ(−x), and
∫
R |κ(x)|dx < ∞. Moreover, the bandwidth

ST is required to diverge with T such that for some d ∈ (2, 4], ST = o(T 1/2−1/d). These

requirements are standard in the literature of HAC estimation; see e.g., de Jong (2000).

Let IP−→ denote convergence in probability and [c] denote the integer part of the number c.

Given some regularity conditions on vt and xt (e.g., Hansen, 1992), suppose further that

the recursive OLS estimators are consistent uniformly in the following sense: β̂[Tr]
IP−→ βo

uniformly in r ∈ (0, 1]. Then, it is not difficult to show that Ṽ T
IP−→ V o. The proof is

similar to that of Hansen (1992); we omit the details.

3 Monte Carlo Simulation

We redo the simulations in Andrews (1991) and KVB. We focus on the Wald tests based

on various HAC estimators and the robust test based on KVB’s normalizing matrix.

The HAC estimators we consider are the HAC-FE, HAC-BDE, HAC-OLS, and HAC-

PW estimators with the quadratic spectral kernel and the bandwidth selection method

of Andrews (1991), where HAC-PW is the pre-whitened HAC estimator of Andrews and
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Monahan (1992). For the HAC-FE and HAC-BDE estimators, the first 10% of FEs and

recursive residuals are dropped. In all simulations, the sample is T = 128, the number

of replications is 2000, and the nominal size is 5%.

For size simulations, the data generating process (DGP) is yt = εt. The DGP is

denoted as AR1-HOMO when εt is autocorrelated and homoskedastic: εt = ρεt−1 + vt

with vt i.i.d. N (0, 1 − ρ2) and ρ = 0,±0.3,±0.5,±0.7, and it is denoted as AR1-HET1

when εt is generated as in AR1-HOMO but is multiplied by |x1,t|. We estimte a linear

regression model with a constant and four stochastic regressors; the i-th regressor is

generated as: xi,t = ρxi,t−1 + ui,t, where for a given i, ui,t are i.i.d. N (0, 1− ρ2) with the

same ρ as in the generation of εt, and {ui,t} and {uj,t} are independent for i 6= j. We test

two hypotheses: (i) β1 = 0 and (ii) βi = 0, i = 1, . . . , 3. The results of size simulations

are reported in Table 1.

We find that the HAC-FE estimator performs quite well. For testing a single hypoth-

esis, the test with the HAC-FE estimator is properly sized when ρ is not too large (for

AR1-HOMO, |ρ| ≤ 0.5; for AR1-HET1, |ρ| ≤ 0.3). Its empirical sizes are comparable

with KVB’s robust test under AR1-HOMO, and are more accurate than KVB’s test under

AR1-HET1, except when |ρ| is large. By contrast, the tests with other HAC estimators

have larger size distortions. In particular, HAC-OLS yields the worst test sizes under

AR1-HOMO, and both HAC-OLS and HAC-BDE perform poorly under AR1-HET1.

It can also be seen that the size performances of these tests all deteriorate when the

number of hypotheses increases. For the case of 3 hypotheses, the test with the HAC-

FE estimator is properly sized only under AR1-HOMO with |ρ| ≤ 0.3 and is in general

oversized under AR1-HET1. Nonetheless, its empirical sizes are comparable with or

better than those of KVB’s test under both DGPs with |ρ| ≤ 0.3. Again, the test with the

HAC-FE estimator outperforms the tests with other HAC estimators, where those with

the HAC-BDE and HAC-OLS estimators perform similarly poor and are outperformed

by the test with the HAC-PW estimator. It is quite remarkable that the HAC-FE

estimator yields better size performance than does the HAC-PW estimator in most cases

we considered. This shows that the pre-whitening regression which requires a user-chosen

parameter (lag order) may be avoided in practice. In other simulations (not reported

here), we find that the HAC-PW estimator may result in even larger size distortion than

does the HAC-OLS estimator when nonlinear dependence (e.g., bilinearity, SETAR, and

Markov switching) is present, but the HAC-FE estimator still performs better.

In Figures 1 (Figure 2), we plot the bias, variance, and mean squared error (MSE)

of the HAC-OLS, HAC-FE, and HAC-BDE estimators with different truncation lags
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(ST = 1, . . . , 30), under AR1-HOMO (AR1-HET1), where the results of ρ = 0.3 and

ρ = 0.5 are in the top and bottom rows, respectively. We can see that, for all trunca-

tion lags, the HAC-FE estimator has the smallest bias (may even have a positive bias)

in all cases, whereas HAC-OLS has the largest bias under AR1-HOMO. Bias perfor-

mances of HAC-OLS and HAC-BDE are similar under AR1-HET1. In terms of MSE,

the HAC-OLS estimator performs the best, yet the HAC-FE estimator has the largest

MSE. These results, together with Table 1, suggest that bias reduction, rather than MSE

minimization, of the HAC estimator is more important for accurate test size, as argued

by Simonoff (1993).

For the power simulations, the DGP is yt = βoxt + εt, where xt is ARMA(1,1): xt =

0.5xt−1 + ut + 0.2ut−1 with ut i.i.d. N (0, 1), εt is AR(1)-GARCH(1,1): εt = 0.3εt−1 + ηt

with ηt =
√

htut and ht = 1 + 0.1η2
t−1 + 0.8ht−1, and βo = 0.2, 0.4, . . . , 2. We estimate

the model with a constant and one regressor xt and test H0 : βo = 0. The size-corrected

power curves of the tests with various HAC estimators and KVB’s normalizing matrix

are plotted in Figure 3, with βo on the horizontal axis. While the power curves of the

tests with HAC estimators are quite close to each other (the test with HAC-FE has only

negligible power loss), they all dominate that of KVB’s robust test. Hence, the HAC-FE

estimator yields more accurate finite-sample test size without losing testing power, as

opposed to the robust test of KVB.

4 Conclusion

In this paper we show that the HAC estimator based on one-step-ahead FEs remains

consistent and compares favorably with other HAC estimators, in that it has a smaller

bias and delivers better test sizes. Compared with KVB’s robust test, the test with the

HAC-FE estimator has similar size performance without sacrificing its power. Our result

also suggests that bias reduction, rather than MSE minimization, is more important for

improving on the performance of the HAC estimator.
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Figure 1: Bias, variance and MSE of HAC-OLS, HAC-FE, and HAC-BDE: AR1-HOMO.
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Figure 2: Bias, variance and MSE of HAC-OLS, HAC-FE, and HAC-BDE: AR1-HET1.
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Figure 3: Empirical powers of the tests with HAC estimators and KVB’s normalizing

matrix.
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Table 1: Empirical Size of AR1 Model

Model ρ HAC-OLS HAC-FE HAC-BDE HAC-PW KVB

H0 : β1 = 0

AR1-HOMO -0.7 0.116 0.0875 0.1065 0.096 0.088

-0.5 0.0815 0.064 0.081 0.069 0.0595

-0.3 0.066 0.0445 0.07 0.063 0.063

0.0 0.066 0.046 0.0515 0.0675 0.0575

0.3 0.0685 0.046 0.0595 0.0645 0.064

0.5 0.0905 0.0665 0.0775 0.076 0.075

0.7 0.1345 0.103 0.11 0.099 0.1025

AR1-HET1 -0.7 0.1415 0.115 0.139 0.115 0.0925

-0.5 0.101 0.081 0.094 0.085 0.074

-0.3 0.0765 0.0605 0.0815 0.0735 0.0655

0.0 0.0595 0.0455 0.066 0.06 0.053

0.3 0.0745 0.052 0.083 0.067 0.068

0.5 0.095 0.0745 0.099 0.081 0.077

0.7 0.14 0.1185 0.146 0.104 0.0855

H0 : β1 = β2 = β3 = 0

AR1-HOMO -0.7 0.2045 0.167 0.2045 0.165 0.126

-0.5 0.146 0.108 0.123 0.1215 0.09

-0.3 0.0965 0.059 0.0975 0.0965 0.068

0.0 0.0845 0.0555 0.066 0.0975 0.067

0.3 0.1035 0.065 0.1085 0.097 0.0615

0.5 0.1545 0.119 0.145 0.118 0.088

0.7 0.281 0.2105 0.2105 0.194 0.14

AR1-HET1 -0.7 0.203 0.178 0.2225 0.172 0.116

-0.5 0.1495 0.1145 0.1405 0.1335 0.0845

-0.3 0.104 0.074 0.1065 0.109 0.08

0.0 0.0845 0.0645 0.077 0.0945 0.072

0.3 0.1045 0.065 0.1005 0.1085 0.073

0.5 0.1605 0.124 0.139 0.137 0.1055

0.7 0.2335 0.1875 0.2285 0.178 0.126
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