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Moment Conditions

Given yt = x′tβ + et , consider the moment function:

IE(xtet) = IE[xt(yt − x′tβ)].

When x′tβ is correctly specified for the linear projection, we have the moment

condition:

IE[xt(yt − x′tβo)] = 0.

Its sample counterpart,

1

T

T∑
t=1

xt(yt − x′tβ) = 0,

is also the FOC for OLS estimation.
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Similarly, given yt = f (xt ;β) + et and the moment function:

IE[∇f (xt ;β)et ] = IE{∇f (xt ;β)[yt − f (xt ;β)]}.

When f (xt ;β) is correctly specified for IE(yt |xt), we have the moment

condition

IE{xt [yt − f (xt ;βo)]} = 0.

Its sample counterpart is the FOC for NLS estimation:

1

T

T∑
t=1

∇f (xt ;β)[yt − f (xt ;β)] = 0.

When the quasi-likelihood function f (xt ;θ) is correctly specified, the moment

condition IE[∇ ln f (xt ;θo)] = 0 holds. The sample counterpart of this

moment condition is the average of the score functions and yields the QMLE

θ̃.
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Given yt = x′tβ + et and the moment function:

IE(ztet) = IE[zt(yt − x′tβ)].

When the variables zt are proper instrument variables such that

IE[zt(yt − x′tβo)] = 0.

The sample counterpart of this moment condition is the FOC for IV

estimation:

1

T

T∑
t=1

zt(yt − x′tβ) = 0.

Note that we can not solve for unknown parameters if the number of moment

conditions is more than the number of parameters.
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GMM Estimation

Consider q moment functions IE[m(zt ;θ)], where θ (k × 1) is the parameter

vector. Suppose there exists unique θo such that

IE[m(zt ;θo)] = 0.

These conditions are exactly identified if q = k and over-identified if q > k.

When the conditions are exactly identified, θo can be estimated by solving their

sample counterpart:

m̄T (θ) =
1

T

T∑
t=1

m(zt ;θ) = 0.

This is the method of moment, which is not applicable when the conditions are

over-identified.
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Given a q × q symmetric and p.d. weighting matrix Wo , note that the following

quadratic objective function,

Q̄(θ;Wo) := IE[m(zt ;θ)]′Wo IE[m(zt ;θ)],

is minimized at θ = θo . The generalized method of moments (GMM) of

Hansen (1982, Econometrica) suggests estimating θo by minimizing the sample

counterpart of Q̄(θ;Wo):

QT (θ;WT ) =
[
m̄T (θ)

]′
WT

[
m̄T (θ)

]
,

where WT is a symmetric and p.d. weighting matrix, possibly dependent on the

sample, and WT converges to Wo in probability. The GMM estimator is thus

θ̂T (WT ) = arg min
θ∈Θ

QT (θ;WT ),

which clearly depends on the choice of WT .
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The FOC of GMM estimation contains k equations in k unknowns:

GT (θ)′WT m̄T (θ) = 0,

where GT (θ) = T−1
∑T

t=1∇m(zt ;θ). The GMM estimator is then solved using a

nonlinear optimization algorithm.

For example, in the linear regression case,

m̄T (β) =
1

T

T∑
t=1

xt(yt − x′tβ).

When WT = Ik , the FOC is(
1

T

T∑
t=1

xtx
′
t

)(
1

T

T∑
t=1

xt(yt − x′tβ)

)
= 0.

Clearly, the resulting GMM estimator is the OLS estimator.
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Consistency

By invoking a suitable ULLN, QT (θ;WT ) is close to Q̄(θ;Wo) uniformly in θ

when T becomes large. Hence, the GMM estimator θ̂T (WT ) ought to be close to

θo , the minimizer of Q̄(θ;Wo), for sufficiently large T . This is the underlying

idea of establishing GMM consistency. This approach is analogous to that for NLS

and QMLE consistency. Note that consistency does not depend on the weighting

matrix. For example, θ̂T (Iq) is consistent for θo , which is also the minimizer of

Q̄(θ; Iq).

Consider the mean value expansion:

√
T m̄T

(
θ̂T (WT )

)
=
√

T m̄T (θo) + GT (θ†T )
√

T
(
θ̂T (WT )− θo

)
,

where θ†T lies between θ̂T (WT ) and θo .
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Asymptotic Distribution

Using the FOC of GMM estimation,

0 = GT

(
θ̂T (WT )

)′
WT

√
T m̄T

(
θ̂T (WT )

)
= GT

(
θ̂T (WT )

)′
WT

√
T m̄T (θo)

+ GT

(
θ̂T (WT )

)′
WTGT (θ†T )

√
T
(
θ̂T (WT )− θo

)
.

When ∇m(zt ;θ) obey a ULLN, so that GT

(
θ̂T (WT )

)
converges to

Go = IE[∇m(zt ;θo)]. Then,

√
T
(
θ̂T (WT )− θo

)
= −

{
IE[∇m(zt ;θo)]

′Wo IE[∇m(zt ;θo)]
}−1

IE[∇m(zt ;θo)]
′Wo [

√
T m̄T (θo)] + oIP(1)

= −
(
G′

oWoGo

)−1
G′

oWo

√
T m̄T (θo) + oIP(1).
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The asymptotic distribution of
√

T
(
θ̂T (WT )− θo

)
is thus determined by

√
T m̄T (θo) =

1√
T

T∑
t=1

m(zt ;θo).

When m(zt ;θo) obey a central limit theorem:

1√
T

T∑
t=1

m(zt ;θo)
D−→ N (0, Σo),

we have
√

T
(
θ̂T (WT )− θo

) D−→ N (0, Ωo), where

Ωo =
(
G′

oWoGo

)−1
G′

oWoΣoWoGo

(
G′

oWoGo

)−1
.

When Wo = Σ−1
o , it is easy to see that Ωo simplifies to(

G′
oΣ

−1
o Go

)−1
G′

oΣ
−1
o Go

(
G′

oΣ
−1
o Go

)−1
=
(
G′

oΣ
−1
o Go

)−1
=: Ω∗

o .
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Asymptotic Efficiency

To compare Ωo and Ω∗
o , note that

(Ω∗
o)
−1 −Ω−1

o

= G′
oΣ

−1
o Go − G′

oWoGo

(
G′

oWoΣoWoGo

)−1
G′

oWoGo

= G′
oΣ

−1/2
o[

I−Σ1/2
o WoGo

(
G′

oWoΣ
1/2
o Σ1/2

o WoGo

)−1
G′

oWoΣ
1/2
o

]
Σ−1/2

o Go ,

which is p.s.d. because the matrix in the square bracket is symmetric and

idempotent. Thus, Ωo −Ω∗
o is p.s.d. This shows that, given the weighting matrix

whose limit is Σ−1
o , the resulting GMM estimator is asymptotically efficient. Σ−1

o

is thus known as the optimal (limiting) weighting matrix.
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Two-Step Optimal GMM Estimator

Hansen and Singleton (1982, Econometrica):

1 Compute a preliminary, consistent estimator θ̂1,T based on the pre-specified

weighting matrix W0,T :

θ̂1,T := arg min
θ∈Θ

[
m̄T (θ)

]′
W0,T

[
m̄T (θ)

]
.

For example, we may set W0,T = Iq.

2 Compute a consistent estimator for Σo based on θ̂1,T and use its inverse as

the optimal weighting matrix, i.e., WT (θ̂1,T ) = Σ̂
−1

T .

3 The two-step optimal GMM estimator is obtained as

θ̂2,T := arg min
θ∈Θ

[
m̄T (θ)

]′
Σ̂
−1

T

[
m̄T (θ)

]
,

which is asymptotically efficient.
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Drawbacks of Two-Step Estimators

The finite-sample performance of the two-step estimator depends on the

preliminary GMM estimator θ̂1,T and hence the initial weighting matrix W0,T .

Note that Σ̂T is also determined by m(zt ;θ). Hence, the correlation between

m̄T and Σ̂T results in finite-sample bias in θ̂2,T .

Computing a consistent estimator of Σo may not be straightforward,

especially when the data are serially correlated and heterogeneously

distributed.
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Iterative GMM Estimator

1 At the j th iteration, compute the j th iterative GMM estimator using the

weighting matrix WT (θ̂j−1,T ):

θ̂j,T := arg min
θ∈Θ

[
m̄T (θ)

]′
WT (θ̂j−1,T )

[
m̄T (θ)

]
.

At the first iteration, we can set the initial weighting matrix W0,T , as in the

two-step estimator.

2 Use θ̂j,T to construct the optimal weighting matrix WT (θ̂j,T ) and set

j = j + 1.

3 Iterate the procedure above till one of the following convergence criteria is

satisfied: For some pre-specified ε,

‖QT (θ̂j,T )− QT (θ̂j−1,T )‖,≤ ε or

‖θ̂j,T − θ̂j−1,T‖ ≤ ε.
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Continuous Updating GMM Estimator

Hansen, Heaton and Yaron (1996, JBES): Continuous updating (CU) estimator is

based on one-time optimization:

θ̂T := arg min
θ∈Θ

[
m̄T (θ)

]′
WT (θ)

[
m̄T (θ)

]
.

The objective function clearly changes when WT depends explicitly on θ. This

does not affect the limiting distribution of the resulting estimator, however; see

Pakes and Pollard (1989, Econometrica).

Remark: The CU estimator is invariant when the moment conditions are re-scaled,

even when the scale factor is parameter dependent; the two-stage or iterative

GMM estimator is sensitive to such transformation, however.

C.-M. Kuan (Finance & CRETA, NTU) Generalized Method of Moment June 16, 2010 16 / 32



Independently Weighted Optimal Estimator

Altonji and Segal (1996, JBES): The independently weighted optimal estimator

avoids possible correlation between m̄T and Σ̂T by splitting the sample and

computing m̄T and Σ̂T with different sub-samples.

Split the sample into ` groups, and let m̄Tj
(θ) be the sample average of

m(zt ,θ) for t in the j th group with Tj observations.

Also let Σ̂
−1

T⊥j
be the optimal weighting matrix based on the observations not

in the j th group.

The resulting GMM estimator is obtained by solving:

θ̂T := arg min
θ∈Θ

∑̀
j=1

[
m̄Tj

(θ)
]′

Σ̂
−1

T⊥j

[
m̄Tj

(θ)
]
.

A common choice of ` is 2.
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Example: Regression with Symmetric Error

Given the specification yt = x′tβ + et , let

m(yt , xt ;β) =

[
xt(yt − x′tβ)

xt(yt − x′tβ)3

]
.

The moment condition IE[m(yt , xt ;βo)] = 0 suggests estimating βo while taking

into account symmetry of the error term. The gradient vector of m is:

∇m(yt , xt ;β) =

[
−xtx

′
t

−3xtx
′
t(yt − x′tβ)2

]
.

If the data are independent over t,

Σo = IE

[
ε2
t xtx

′
t ε4

t xtx
′
t

ε4
t xtx

′
t ε6

t xtx
′
t

]
.
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Let êt = yt − x′t β̂1,T , where β̂1,t is a first-step GMM estimator based on a

preliminary weighting matrix. Then, Σo may be estimated by the sample

counterpart:

Σ̂T (β̂1,T ) =
1

T

T∑
t=1

[
ê2
t xtx

′
t ê4

t xtx
′
t

ê4
t xtx

′
t ê6

t xtx
′
t

]
.

Note that β̂1,T here may be the OLS estimator (in fact, we only need a consistent

estimator for βo). The two-step GMM estimator is computed with
[
Σ̂T (β̂1,T )

]−1

the weighting matrix; that is,

θ̂2,T := arg min
θ∈Θ

m̄T (θ)
[
Σ̂T (β̂1,T )

]−1
m̄T (θ).
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Example: Generalized Instrumental Variables Estimator

For the specification yt = x′tβ + et , consider the moment condition:

IE[mt(βo)] = IE[zt(yt − x′tβo)] = 0,

where zt contains q > k instrumental variables. The GMM estimator minimizes(
1

T

T∑
t=1

zt(yt − x′tβ)

)′

WT

(
1

T

T∑
t=1

zt(yt − x′tβ)

)
,

and solves(
T∑

t=1

xtz
′
t

)
WT

(
T∑

t=1

zt(yt − x′tβ)

)
= (X′Z)WT [Z′(y − Xβ)] = 0.

where Z (T × q) is the matrix of instrumental variables and X (T × k) is the

matrix of regressors.
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The GMM estimator here is also the generalized instrumental variables estimator:

β̂(WT ) = (X′ZWTZ′X)−1X′ZWTZ′y.

When the data are independent over t and there is no condition heteroskedasticity,

Σo = var

(
1√
T

T∑
t=1

zt(yt − x′tβo)

)
=

σ2
o

T

T∑
t=1

IE(ztz
′
t).

Ignoring σ2
o in Σo , T−1

∑T
t=1 IE(ztz

′
t) can be estimated by Z′Z/T . The two-step

GMM estimator now is:

β̂2,T = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y,

which is also known as the two-stage least squares (2SLS) estimator.
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The 2SLS estimator can be expressed as

θ̂2,T = [X̃
′
X̃]−1X̃

′
y,

where X̃ = Z(Z′Z)−1Z′X is the matrix of fitted values from the OLS regression of

X on Z. Hence, θ̂2,T is also the OLS estimator of regressing y on X̃ (Theil, 1953).

When the errors are not conditionally homoskedastic, the 2SLS estimator remains

consistent (why?), but it is no longer the most efficient. A two-step GMM

estimator with a properly estimated weighting matrix [Σ̂T (β̂1,T )]−1 is more

efficient. For example,

Σ̂T (β̂1,T ) =
1

T

T∑
t=1

ê2
t ztz

′
t ,

where êt = yt − x′t β̂1,T are the residuals from the first-step GMM estimation.
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Over-Identifying Restrictions Test

To test whether the model for IE[m(zt ,θ0)] = 0 is correctly specified, it is natural

to check if m̄T (θ̂T ) is sufficiently close to zero. For example, when the moment

conditions are the Euler equations in different capital asset pricing models, this

amounts to checking if the “pricing errors” are zero.

The over-identifying restrictions (OIR) test of Hansen (1982), also known as the

J test, is based on the value of the GMM objective function:

JT := T
[
m̄T

(
θ̂T (WT )

)]′
WT

[
m̄T

(
θ̂T (WT )

)]
.

As the test statistic involves the GMM estimator obtained from the same

objective function, the limiting distribution is χ2(q − k).
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To derive its limiting distribution, note that

W
1/2
T

√
T m̄T

(
θ̂T (WT )

)
= W

1/2
T

√
T m̄T (θo) + W

1/2
T GT (θ†T )

√
T
(
θ̂T (WT )− θo

)
.

As
√

T
(
θ̂T (WT )− θo

)
= −

(
G′

oWoGo

)−1
G′

oWo

√
T m̄T (θo) + oIP(1),

W
1/2
T

√
T m̄T

(
θ̂T (WT )

)
= Po W1/2

o

√
T m̄T (θo) + oIP(1)

where Po = I−W1/2
o Go

(
G′

oWoGo

)−1
G′

oW
1/2
o which is symmetric and

idempotent with rank q − k (why?), and

W1/2
o

√
T m̄T (θo)

D−→ N (0, W1/2
o ΣoW

1/2
o ).
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When Wo = Σ−1
o , the limiting distribution simplifies:

W1/2
o

√
T m̄T (θo)

D−→ N (0, Iq).

Consequently,

JT = T m̄T (θo)
′W1/2

o PoPoW
1/2
o m̄T (θo)

D−→ χ2(q − k).

Remarks:

The weighting matrix in the J statistic and the weighting matrix for the

GMM estimator in m̄T must be the same. And the weighting matrix WT for

the GMM estimator must converge to Wo = Σ−1
o . That is, J test requires

the optimal GMM estimator.

Lee and Kuan (2010) propose an OIR test that does not requires the

weighting matrix to converge to Σo and hence avoids the optimal GMM

estimation.
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Hausman Test

Given two estimators θ̂T and θ̌T of the parameter θo , suppose that both are

consistent under the null hypothesis but only one, say θ̌T , is consistent under the

alternative. The Hausman test suggests testing the null hypothesis by comparing

these two estimators.

The Hausman test is particularly useful for testing model specification, which may

not be expressed as parameter restrictions. For example, consider testing the null

hypothesis that regressors are exogenous against the alternative of endogenous

regressors. Under “classical” conditions, the OLS estimator θ̂T and the 2SLS

estimator θ̌T are consistent under the null, but only the 2SLS estimator is

consistent under the alternative. Thus, we can test for endogeneity by checking if

θ̂T − θ̌T is sufficiently large.
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The Hausman test reads:

HT = T
(
θ̂T − θ̌T

)′
V̂
−1

T

(
θ̂T − θ̌T

) D−→ χ2(k),

where V̂T is a consistent estimator for the asymptotic covariance matrix of√
T
(
θ̂T − θ̌T

)
:

V
(
θ̂T − θ̌T

)
= V

(
θ̂T

)
+ V

(
θ̌T

)
− 2 cov

(
θ̂T , θ̌T

)
.

This asymptotic covariance matrix is simplified when θ̂T is also asymptotically

efficient under the null. In particular, we can show

V1,2 := cov
(
θ̂T , θ̌T

)
= V(θ̂T ),

so that V
(
θ̂T − θ̌T

)
depends only on the respective asymptotic covariance

matrices of these two estimators:

V
(
θ̂T − θ̌T

)
= V

(
θ̌T

)
− V

(
θ̂T

)
.
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To see this, consider the following estimator which is a linear combination of θ̂T

and θ̌T :

θ̂
†
T = θ̂T +

[
V
(
θ̂T

)
− V1,2

]
V
(
θ̂T − θ̌T

)−1(
θ̌T − θ̂T

)
.

It is easy to verify that

V
(
θ̂
†
T

)
= V

(
θ̂T

)
−
[
V
(
θ̂T

)
− V1,2

]
V
(
θ̂T − θ̌T

)−1[
V
(
θ̂T

)
− V1,2

]′
.

If V
(
θ̂T

)
is not the same as V1,2, the second term on the RHS is p.d. It follows

that θ̂
†
T is asymptotically more efficient than θ̂T . But this contradicts the

assumption that θ̂T is asymptotically more efficient. This suggests that

V
(
θ̂T

)
= V1,2.
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Wald Test

Hypothesis: R(θ) = 0, where R : RK 7→ Rr . A mean-value expansion yields

R(θ̂T ) = R(θ0) +∇R(θ†)(θ̂T − θ0),

where
√

T (θ̂T − θ0)
D−→ N (0,Ω0). Therefore,

√
T
[
R(θ̂T )− R(θ0)

] D−→ N
(
0, [∇R(θo)]Ω0[∇R(θo)]

′).
It follows that, under the null hypothesis,

WT := TR
(
θ̂T

)′ ([∇R
(
θ̂T

)]
Ω̂T

[
∇R
(
θ̂T

)]′)−1

R
(
θ̂T

) D−→ χ2(r).

where Ω̂T is a consistent estimator of Ωo . For the linear hypothesis Rθ0 = r with

R a r × k matrix,

WT = T (Rθ̂T − r)′(RΩ̂TR′)−1(Rθ̂T − r)
D−→ χ2(r).
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Estimation of Conditional Moment Restrictions

Consider the conditional moment restrictions:

IE[h(ηt ;θo)|F t ] = 0,

where h is r × 1 and F t is the information set up to time t.

Let wt be a set of variables from F t and may contain some variables in ηt . The

conditional moment restrictions above imply

IE[D(wt)
′h(ηt ;θo)] = 0,

where D(wt) is a (r × n) matrix of instruments. GMM estimation of θo is based

on the sample moments:

1

T

T∑
t=1

mt(θ) =
1

T

T∑
t=1

D(wt)
′h(ηt ;θ).
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The optimal GMM estimator has asymptotic covariance matrix
(
G′

oΣ
−1
o Go

)−1
,

with

Σo = IE
[
D(wt)

′h(ηt ;θo)h(ηt ;θo)
′D(wt)

]
, (n × n)

Go = IE
[
D(wt)

′∇h(ηt ;θo)
]
. (n × k)

For a smaller set of sample moments obtained by taking a linear transformation:

1

T

T∑
t=1

C′D(wt)
′h(ηt ;θ),

where C is n × p with p < n, the asymptotic covariance matrix of the resulting

optimal GMM estimator is
[
G′

oC(C′ΣoC)−1C′Go

]−1
. It is readily seen that

G′
oΣ

−1
o Go − G′

oC(C′ΣoC)−1C′Go

= G′
oΣ

−1/2
o

[
In −Σ1/2

o C(C′Σ1/2
o Σ1/2

o C)−1C′Σ1/2
o

]
Σ−1/2

o Go ,

which is p.s.d. matrix.
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Number of moment conditions: The optimal GMM estimator based on a larger set

of moment conditions is asymptotically more efficient, yet it may have a larger

bias in finite samples.

Optimal instruments:

D∗(wt ;θ) =
[
var(h(ηt ;θ)|F t)

]−1
IE
[
∇h(ηt ;θ)|F t

]
=: V−1

t Jt , (r × k)

which contains k instruments. In this case,

Σo = IE
(
J′tV

−1
t VtV

−1
t Jt

)
= IE

(
J′tV

−1
t Jt

)
,

Go = IE
[
J′tV

−1
t ∇h(ηt ;θo)

]
= IE

(
J′tV

−1
t Jt

)
.

The optimal GMM estimator thus has the asymptotic covariance matrix(
G′

oΣ
−1
o Go

)−1
= IE

(
J′tV

−1
t Jt

)−1
.

As Jt and Vt are conditional expectations and depend on unknown parameters, it

is not easy to estimate the optimal instruments in practice.
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