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1

1 Vector

An n-dimensional vector in <n is a collection of n real numbers. An n-dimensional row

vector is written as (u1, u2, . . . , un), and the corresponding column vector is
u1

u2
...

un

 .

Clearly, a vector reduces to a scalar when n = 1. A vector can also be interpreted as

a point in a system of coordinate axes, such that its components ui represent the cor-

responding coordinates. In what follows, we use standard English and Greek alphabets

to denote scalars and those alphabets in boldface to denote vectors.

1.1 Vector Operations

Consider vectors u, v, and w in <n and scalars h and k. Two vectors u and v are said

to be equal if they are the same componentwise, i.e., ui = vi, i = 1, . . . , n. Thus,

(u1, u2, . . . , un) 6= (u2, u1, . . . , un),

unless u1 = u2. Also, (u1, u2), (−u1,−u2) (−u1, u2) and (u1,−u2) are not equal. In

fact, they are four vectors pointing to different directions. This shows that direction is

crucial in determining a vector. This is in contrast with the quantities such as area and

length for which direction is of no relevance.

The sum of u and v is defined as

u + v = (u1 + v1, u2 + v2, . . . , un + vn),

and the scalar multiple of u is

hu = (hu1, hu2, . . . , hun).

Moreover,

1. u + v = v + u;

2. u + (v + w) = (u + v) + w;

3. h(ku) = (hk)u;

4. h(u + v) = hu + hv;
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1.2 Euclidean Inner Product and Norm 2

5. (h + k)u = hu + ku;

The zero vector o is the vector with all elements zero, so that for any vector u, u+o = u.

As u + (−u) = o, −u is also known as the negative (additive inverse) of u. Note that

the negative of u is a vector pointing to the opposite direction of u.

1.2 Euclidean Inner Product and Norm

The Euclidean inner product of u and v is defined as

u · v = u1v1 + u2v2 + · · ·+ unvn.

Euclidean inner products have the following properties:

1. u · v = v · u;

2. (u + v) ·w = u ·w + v ·w;

3. (hu) · v = h(u · v), where h is a scalar;

4. u · u ≥ 0; u · u = 0 if, and only if, u = o.

The norm of a vector is a non-negative real number characterizing its magnitude. A

commonly used norm is the Euclidean norm:

‖u‖ = (u2
1 + · · ·+ u2

n)1/2 = (u · u)1/2.

Taking u as a point in the standard Euclidean coordinate system, the Euclidean norm

of u is just the familiar Euclidean distance between this point and the origin. There

are other norms; for example, the maximum norm of a vector is defined as the largest

absolute value of its components:

‖u‖∞ = max(|u1|, |u2|, · · · , |un|).

Note that for any norm ‖ ·‖ and a scalar h, ‖hu‖ = |h| ‖u‖. A norm may also be viewed

as a generalization of the usual notion of “length;” different norms are just different

ways to describe the “length.”

1.3 Unit Vector

A vector is said to be a unit vector if its norm equals one. Two unit vectors are said

to be orthogonal if their inner product is zero (see also Section 1.4). For example,

(1, 0, 0), (0, 1, 0), (0, 0, 1), and (0.267, 0.534, 0.802) are all unit vectors in <3, but only
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1.4 Direction Cosine 3

the first three vectors are mutually orthogonal. Orthogonal unit vectors are also known

as orthonormal vectors. In particular, (1, 0, 0), (0, 1, 0) and (0, 0, 1) are orthonormal and

referred to as Cartesian unit vectors. It is also easy to see that any non-zero vector can

be normalized to unit length. To see this, observe that for any u 6= o,∥∥∥∥ u

‖u‖

∥∥∥∥ =
1
‖u‖

‖u‖ = 1.

That is, any vector u divided by its norm (i.e., u/‖u‖) has norm one.

Any n-dimensional vector can be represented as a linear combination of n orthonor-

mal vectors:

u = (u1, u2, . . . , un)

= (u1, 0, . . . , 0) + (0, u2, 0, . . . , 0) + · · ·+ (0, . . . , 0, un)

= u1(1, 0, . . . , 0) + u2(0, 1, . . . , 0) + · · ·+ un(0, . . . , 0, 1).

Hence, orthonormal vectors can be viewed as orthogonal coordinate axes of unit length.

We could, of course, change the coordinate system without affecting the vector. For

example, u = (1, 1/2) is a vector in the Cartesian coordinate system:

u = (1, 1/2) = 1(1, 0) +
1
2

(0, 1),

and it can also be expressed in terms of the orthogonal vectors (2, 0) and (0, 3) as

(1, 1/2) =
1
2

(2, 0) +
1
6

(0, 3).

Thus, u = (1, 1/2) is also the vector (1/2, 1/6) in the coordinate system of the vectors

(2, 0) and (0, 3). As (2, 0) and (0, 3) can be expressed in terms of Cartesian unit vectors,

it is typical to consider only the Cartesian coordinate system.

1.4 Direction Cosine

Given u in <n, let θi denote the angle between u and the i th axis. The direction cosines

of u are

cos θi := ui/‖u‖, i = 1, . . . , n.

Clearly,
n∑

i=1

cos2 θi =
n∑

i=1

u2
i /‖u‖2 = 1.

Note that for any scalar non-zero h, hu has the direction cosines:

cos θi = hui/‖hu‖ = ± (ui/‖u‖) , i = 1, . . . , n.
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1.4 Direction Cosine 4

That is, direction cosines are independent of vector magnitude; only the sign of h

(direction) matters.

Let u and v be two vectors in <n with direction cosines ri and si, i = 1, . . . , n, and

let θ denote the angle between u and v. Note that u, v and u − v form a triangle.

Then by the law of cosine,

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ ‖v‖ cos θ,

or equivalently,

cos θ =
‖u‖2 + ‖v‖2 − ‖u− v‖2

2‖u‖ ‖v‖
.

The numerator above can be expressed as

‖u‖2 + ‖v‖2 − ‖u− v‖2

= ‖u‖2 + ‖v‖2 − ‖u‖2 − ‖v‖2 + 2u · v

= 2u · v.

Hence,

cos θ =
u · v

‖u‖ ‖v‖
.

We have proved:

Theorem 1.1 For two vectors u and v in <n,

u · v = ‖u‖ ‖v‖ cos θ,

where θ is the angle between u and v.

When θ = 0 (π), u and v are on the same “line” with the same (opposite) direction. In

this case, u and v are said to be linearly dependent (collinear), and u can be written

as hv for some scalar h. When θ = π/2, u and v are said to be orthogonal. As

cos(π/2) = 0, two non-zero vectors u and v are orthogonal if, and only if, u · v = 0.

As −1 ≤ cos θ ≤ 1, we immediately have from Theorem 1.1 that:

Theorem 1.2 (Cauchy-Schwartz Inequality) Given two vectors u and v,

|u · v| ≤ ‖u‖‖v‖;

the equality holds when u and v are linearly dependent.
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By the Cauchy-Schwartz inequality,

‖u + v‖2 = (u · u) + (v · v) + 2(u · v)

≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖

= (‖u‖+ ‖v‖)2.

This establishes the well known triangle inequality.

Theorem 1.3 (Triangle Inequality) Given two vectors u and v,

‖u + v‖ ≤ ‖u‖+ ‖v‖;

the equality holds when u = hv and h > 0.

If u and v are orthogonal, we have

‖u + v‖2 = ‖u‖2 + ‖v‖2,

the generalized Pythagoras theorem.

1.5 Statistical Applications

Given a random variable X with n observations x1, . . . , xn, different statistics can be

used to summarize the information contained in this sample. An important statistic is

the sample average of xi which labels the “location” of these observations. Let x denote

the vector of these n observations. The sample average of xi is

x̄ :=
1
n

n∑
i=1

xi =
1
n

(x · `),

where ` is the vector of ones. Another important statistic is the sample variance of xi

which describes the “dispersion” of these observations. Let x∗ = x− x̄` be the vector

of deviations from the sample average. The sample variance of xi is

s2
x :=

1
n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1
‖x∗‖2.

Note that s2
x is invariant with respect to scalar addition, in the sense that s2

x = s2
x+a

for any scalar a. By contrast, the sample second moment of x,

1
n

n∑
i=1

x2
i =

1
n
‖x‖2,
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1.5 Statistical Applications 6

is not invariant with respect to scalar addition. Also note that sample variance is

divided by n− 1 rather than n. This is because

1
n

n∑
i=1

(xi − x̄) = 0,

so that any component of x∗ depends on the remaining n− 1 components. The square

root of s2
x is called the standard deviation of xi, denoted as sx.

For two random variables X and Y with the vectors of observations x and y, their

sample covariance characterizes the co-variation of these observations:

sx,y :=
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n− 1
(x∗ · y∗),

where y∗ = y − ȳ`. This statistic is again invariant with respect to scalar addition.

Both sample variance and covariance are not invariant with respect to constant

multiplication (i.e., not scale invariant). The sample covariance normalized by corre-

sponding standard deviations is called the sample correlation coefficient :

rx,y :=
∑n

i=1(xi − x̄)(yi − ȳ)
[
∑n

i=1(xi − x̄)2]1/2[
∑n

i=1(yi − ȳ)2]1/2

=
x∗ · y∗

‖x∗‖‖y∗‖

= cos θ∗,

where θ∗ is the angle between x∗ and y∗. Clearly, rx,y is scale invariant and bounded

between −1 and 1.

Exercises

1.1 Let u = (1,−3, 2) and v = (4, 2, 1). Draw a figure to show u, v, u+v, and u−v.

1.2 Find the norms and pairwise inner products of the vectors: (−3, 2, 4), (−3, 0, 0),

and (0, 0, 4). Also normalize them to unit vectors.

1.3 Find the angle between the vectors (1, 2, 0, 3) and (2, 4,−1, 1).

1.4 Find two unit vectors that are orthogonal to (3,−2).

1.5 Prove that the zero vector is the only vector with norm zero.
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1.5 Statistical Applications 7

1.6 Given two vectors u and v, prove that∣∣∣‖u‖ − ‖v‖∣∣∣ ≤ ‖u− v‖.

Under what condition does this inequality hold as an equality?

1.7 (Minkowski Inequality) Given k vectors u1,u2, . . . ,uk, prove that

‖u1 + u2 + · · ·+ uk‖ ≤ ‖u1‖+ ‖u2‖+ · · ·+ ‖uk‖.

1.8 Express the Cauchy-Schwartz and triangle inequalities in terms of sample covari-

ances and standard deviations.
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2 Vector Space

A set V of vectors in <n is a vector space if it is closed under vector addition and scalar

multiplication. That is, for any vectors u and v in V , u+v and hu are also in V , where

h is a scalar. Note that vectors in <n with the standard operations of addition and

scalar multiplication must obey the properties mentioned in Section 1.1. For example,

<n and {o} are vector spaces, but the set of all points (a, b) with a ≥ 0 and b ≥ 0 is

not a vector space. (Why?) A set S is a subspace of a vector space V if S ⊆ V is closed

under vector addition and scalar multiplication. For examples, {o}, <3, lines through

the origin, and planes through the origin are all subspaces of <3; {o}, <2, and lines

through the origin are all subspaces of <2.

2.1 The Dimension of a Vector Space

The vectors u1, . . . ,uk in a vector space V are said to span V if every vector in V can

be expressed as a linear combination of these vectors. That is, for any v ∈ V ,

v = a1u1 + a2u2 + · · ·+ akuk,

where a1, . . . , ak are real numbers. We also say that {u1, . . . ,uk} form a spanning set of

V . Intuitively, a spanning set of V contains all the information needed to generate V . It

is not difficult to see that, given k spanning vectors u1, . . . ,uk, all linear combinations

of these vectors form a subspace of V , denoted as span(u1, . . . ,uk). In fact, this is the

smallest subspace containing u1, . . . ,uk. For example, Let u1 and u2 be non-collinear

vectors in <3 with initial points at the origin, then all the linear combinations of u1 and

u2 form a plane through the origin, which is a subspace of <3.

Let S = {u1,. . . ,uk} be a set of non-zero vectors. Then S is said to be a linearly

independent set if the only solution to the vector equation

a1u1 + a2u2 + · · ·+ akuk = o

is a1 = a2 = · · · = ak = 0; if there are other solutions, S is said to be linearly dependent.

Clearly, any one of k linearly dependent vectors can be written as a linear combination

of the remaining k − 1 vectors. For example, the vectors: u1 = (2,−1, 0, 3), u2 =

(1, 2, 5,−1), and u3 = (7,−1, 5, 8) are linearly dependent because 3u1 + u2 − u3 = o,

and the vectors: (1, 0, 0), (0, 1, 0), and (0, 0, 1) are clearly linearly independent. Note

that for a set of linearly dependent vectors, there must be at least one “redundant”

vector, in the sense that the information contained in this vector is also contained in

the remaining vectors. It is also easy to show the following result; see Exercise 2.3.
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2.1 The Dimension of a Vector Space 9

Theorem 2.1 Let S = {u1, . . . ,uk} ⊆ V .

(a) If there exists a subset of S which contains r ≤ k linearly dependent vectors, then

S is also linearly dependent.

(b) If S is a linearly independent set, then any subset of r ≤ k vectors is also linearly

independent.

A set of linearly independent vectors in V is a basis for V if these vectors span V .

While the vectors of a spanning set of V may be linearly dependent, the vectors of a

basis must be linearly independent. Intuitively, we may say that a basis is a spanning set

without “redundant” information. A nonzero vector space V is finite dimensional if its

basis contains a finite number of spanning vectors; otherwise, V is infinite dimensional .

The dimension of a finite dimensional vector space V is the number of vectors in a basis

for V . Note that {o} is a vector space with dimension zero. As examples we note that

{(1, 0), (0, 1)} and {(−3, 7), (5, 5)} are two bases for <2. If the dimension of a vector

space is known, the result below shows that a set of vectors is a basis if it is either a

spanning set or a linearly independent set.

Theorem 2.2 Let V be a k-dimensional vector space and S = {u1, . . . ,uk}. Then S

is a basis for V provided that either S spans V or S is a set of linearly independent

vectors.

Proof: If S spans V but S is not a basis, then the vectors in S are linearly dependent.

We thus have a subset of S that spans V but contains r < k linearly independent vectors.

It follows that the dimension of V should be r, contradicting the original hypothesis.

Conversely, if S is a linearly independent set but not a basis, then S does not span

V . Thus, there must exist r > k linearly independent vectors spanning V . This again

contradicts the hypothesis that V is k-dimensional. 2

If S = {u1, . . . ,ur} is a set of linearly independent vectors in a k-dimensional vector

space V such that r < k, then S is not a basis for V . We can find a vector ur+1 which

is linearly independent of the vectors in S. By enlarging S to S′ = {u1, . . . ,ur,ur+1}
and repeating this step k − r times, we obtain a set of k linearly independent vectors.

It follows from Theorem 2.2 that this set must be a basis for V . We have proved:

Theorem 2.3 Let V be a k-dimensional vector space and S = {u1, . . . ,ur}, r ≤ k, be

a set of linearly independent vectors. Then there exist k− r vectors ur+1, . . . ,uk which

are linearly independent of S such that {u1, . . . ,ur, . . . ,uk} form a basis for V .
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2.2 The Sum and Direct Sum of Vector Spaces 10

An implication of this result is that any two bases must have the same number of

vectors.

2.2 The Sum and Direct Sum of Vector Spaces

Given two vector spaces U and V , the set of all vectors belonging to both U and V is

called the intersection of U and V , denoted as U ∩ V , and the set of all vectors u + v,

where u ∈ U and v ∈ V , is called the sum or union of U and V , denoted as U ∪ V .

Theorem 2.4 Given two vector spaces U and V , let dim(U) = m, dim(V ) = n,

dim(U ∩ V ) = k, and dim(U ∪ V ) = p, where dim(·) denotes the dimension of a vector

space. Then, p = m + n− k.

Proof: Also let w1, . . . ,wk denote the basis vectors of U ∩ V . The basis for U can be

written as

S(U) = {w1, . . . ,wk,u1, . . . ,um−k},

where ui are some vectors not in U ∩ V , and the basis for V can be written as

S(V ) = {w1, . . . ,wk,v1, . . . ,vn−k},

where vi are some vectors not in U ∩ V . It can be seen that the vectors in S(U) and

S(V ) form a spanning set for U ∪ V . The assertion follows if these vectors form a

basis. We therefore must show that these vectors are linearly independent. Consider

an arbitrary linear combination:

a1w1 + · · ·+ akwk + b1u1 + · · ·+ bm−kum−k + c1v1 + · · ·+ cn−kvn−k = 0.

Then,

a1w1 + · · ·+ akwk + b1u1 + · · ·+ bm−kum−k = −c1v1 − · · · − cn−kvn−k,

where the left-hand side is a vector in U . It follows that the right-hand side is also in

U . Note, however, that a linear combination of v1, . . . ,vn−k should be a vector in V

but not in U . Hence, the only possibility is that the right-hand side is the zero vector.

This implies that the coefficients ci must be all zeros because v1, . . . ,vn−k are linearly

independent. Consequently, all ai and bi must also be all zeros. 2

When U ∩ V = {o}, U ∪ V is called the direct sum of U and V , denoted as U ⊕ V .

It follows from Theorem 2.4 that the dimension of the direct sum of U and V is

dim(U ⊕ V ) = dim(U) + dim(V ).
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2.3 Orthogonal Basis Vectors 11

If w ∈ U ⊕ V , then w = u1 + v1 for some u1 ∈ U and v1 ∈ V . If one can also write

w = u2 + v2, where u1 6= u2 ∈ U and v1 6= v2 ∈ V , then u1 − u2 = v2 − v1 is a

non-zero vector belonging to both U and V . But this is not possible by the definition

of direct sum. This shows that the decomposition of w ∈ U ⊕ V must be unique.

Theorem 2.5 Any vector w ∈ U ⊕ V can be written uniquely as w = u + v, where

u ∈ U and v ∈ V .

More generally, given vector spaces Vi, i = 1, . . . , n, such that Vi ∩ Vj = {o} for all

i 6= j, we have

dim(V1 ⊕ V2 ⊕ · · · ⊕ Vn) = dim(V1) + dim(V2) + · · ·+ dim(Vn).

That is, the dimension of a direct sum is simply the sum of individual dimensions.

Theorem 2.5 thus implies that any vector w ∈ V1 ⊕ · · · ⊕ Vn can be written uniquely as

w = v1 + · · ·+ vn, where vi ∈ Vi, i = 1, . . . , n.

2.3 Orthogonal Basis Vectors

A set of vectors is an orthogonal set if all vectors in this set are mutually orthogonal ;

an orthogonal set of unit vectors is an orthonormal set. If a vector v is orthogonal to

u1, . . . ,uk, then v must be orthogonal to any linear combination of u1, . . . ,uk, and

hence the space spanned by these vectors.

A k-dimensional space must contain exactly k mutually orthogonal vectors. Given

a k-dimensional space V , consider now an arbitrary linear combination of k mutually

orthogonal vectors in V :

a1u1 + a2u2 + · · ·+ akuk = o.

Taking inner products with ui, i = 1, . . . , k, we obtain

a1‖u1‖2 = · · · = ak‖uk‖2 = 0.

This implies that a1 = · · · = ak = 0. Thus, u1, . . . ,uk are linearly independent and

form a basis. Conversely, given a set of k linearly independent vectors, it is always

possible to construct a set of k mutually orthogonal vectors; see Section 2.4. These

results suggest that we can always consider an orthogonal (or orthonormal) basis; see

also Section 1.3.
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2.4 Orthogonal Projection 12

Two vector spaces U and V are said to be orthogonal if u · v = 0 for every u ∈ U

and v ∈ V . For a subspace S of V , its orthogonal complement is a vector space defined

as:

S⊥ := {v ∈ V : v · s = 0 for every s ∈ S} .

Thus, S and S⊥ are orthogonal, and S ∩ S⊥ = {o} so that S ∪ S⊥ = S ⊕ S⊥. Clearly,

S ⊕ S⊥ is a subspace of V . Suppose that V is n-dimensional and S is r-dimensional

with r < n. Let {u1, . . . ,un} be the orthonormal basis of V with {u1, . . . ,ur} being

the orthonormal basis of S. If v ∈ S⊥, it can be written as

v = a1u1 + · · ·+ arur + ar+1ur+1 + · · ·+ anun.

As v · ui = ai, we have a1 = · · · = ar = 0, but ai need not be 0 for i = r + 1, . . . , n.

Hence, any vector in S⊥ can be expressed as a linear combination of orthonormal vectors

ur+1, . . . ,un. It follows that S⊥ is n− r dimensional and

dim(S ⊕ S⊥) = dim(S) + dim(S⊥) = r + (n− r) = n.

That is, dim(S ⊕ S⊥) = dim(V ). This proves the following important result.

Theorem 2.6 Let V be a vector space and S its subspace. Then, V = S ⊕ S⊥.

The corollary below follows from Theorem 2.5 and 2.6.

Corollary 2.7 Given the vector space V , v ∈ V can be uniquely expressed as v = s+e,

where s is in a subspace S and e is in S⊥.

2.4 Orthogonal Projection

Given two vectors u and v, let u = s + e. It turns out that s can be chosen as a

scalar multiple of v and e is orthogonal to v. To see this, suppose that s = hv and e

is orthogonal to v. Then

u · v = (s + e) · v = (hv + e) · v = h(v · v).

This equality is satisfied for h = (u · v)/(v · v). We have

s =
u · v
v · v

v, e = u− u · v
v · v

v.

That is, u can always be decomposed into two orthogonal components s and e, where

s is known as the orthogonal projection of u on v (or the space spanned by v) and e is
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2.4 Orthogonal Projection 13

orthogonal to v. For example, consider u = (a, b) and v = (1, 0). Then u = (a, 0)+(0, b),

where (a, 0) is the orthogonal projection of u on (1, 0) and (0, b) is orthogonal to (1, 0).

More generally, Corollary 2.7 shows that a vector u in an n-dimensional space V can

be uniquely decomposed into two orthogonal components: the orthogonal projection of

u onto a r-dimensional subspace S and the component in its orthogonal complement.

If S = span(v1, . . . ,vr), we can write the orthogonal projection onto S as

s = a1v1 + a2v2 + · · ·+ arvr

and e · s = e · vi = 0 for i = 1, . . . , r. When {v1, . . . ,vr} is an orthogonal set, it can be

verified that ai = (u · vi)/(vi · vi) so that

s =
u · v1

v1 · v1

v1 +
u · v2

v2 · v2

v2 + · · ·+ u · vr

vr · vr

vr,

and e = u− s.

This decomposition is useful because the orthogonal projection of a vector u is the

“best approximation” of u in the sense that the distance between u and its orthogonal

projection onto S is less than the distance between u and any other vector in S.

Theorem 2.8 Given a vector space V with a subspace S, let s be the orthogonal pro-

jection of u ∈ V onto S. Then

‖u− s‖ ≤ ‖u− v‖,

for any v ∈ S.

Proof: We can write u− v = (u− s) + (s− v), where s− v is clearly in S, and u− s

is orthogonal to S. Thus, by the generalized Pythagoras theorem,

‖u− v‖2 = ‖u− s‖2 + ‖s− v‖2 ≥ ‖u− s‖2.

The inequality becomes an equality if, and only if, v = s. 2

As discussed in Section 2.3, a set of linearly independent vectors u1, . . . ,uk can be

transformed to an orthogonal basis. The Gram-Schmidt orthogonalization procedure

does this by sequentially performing orthogonal projection of each ui on previously
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2.5 Statistical Applications 14

orthogonalized vectors. Specifically,

v1 = u1,

v2 = u2 −
u2 · v1

v1 · v1

v1,

v3 = u3 −
u3 · v2

v2 · v2

v2 −
u3 · v1

v1 · v1

v1,

...

vk = uk −
uk · vk−1

vk−1 · vk−1

vk−1 −
uk · vk−2

vk−2 · vk−2

vk−2 − · · · −
uk · v1

v1 · v1

v1.

It can be easily verified that vi, i = 1, . . . , k, are mutually orthogonal.

2.5 Statistical Applications

Consider two variables with n observations: y = (y1, . . . , yn) and x = (x1, . . . , xn). One

way to describe the relationship between y and x is to compute (estimate) a straight

line, ŷ = α` + βx, that “best” fits the data points (yi, xi), i = 1, . . . , n. In the light of

Theorem 2.8, this objective can be achieved by computing the orthogonal projection of

y onto the space spanned by ` and x.

We first write y = ŷ +e = α`+βx+e, where e is orthogonal to ` and x, and hence

ŷ. To find unknown α and β, note that

y · ` = α(` · `) + β(x · `),

y · x = α(` · x) + β(x · x).

Equivalently, we obtain the so-called normal equations:
n∑

i=1

yi = nα + β

n∑
i=1

xi,

n∑
i=1

xiyi = α

n∑
i=1

xi + β

n∑
i=1

x2
i .

Solving these equations for α and β we obtain

α = ȳ − βx̄,

β =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

.

This is known as the least squares method. The resulting straight line, ŷ = α` + βx, is

the least-squares regression line, and e is the vector of regression residuals. It is evident

that the regression line so computed has made ‖y− ŷ‖ = ‖e‖ (hence the sum of squared

errors ‖e‖2) as small as possible.
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2.5 Statistical Applications 15

Exercises

2.1 Show that every vector space must contain the zero vector.

2.2 Determine which of the following are subspaces of <3 and explain why.

(a) All vectors of the form (a, 0, 0).

(b) All vectors of the form (a, b, c), where b = a + c.

2.3 Prove Theorem 2.1.

2.4 Let S be a basis for an n-dimensional vector space V . Show that every set in V

with more than n vectors must be linearly dependent.

2.5 Which of the following sets of vectors are bases for <2?

(a) (2, 1) and (3, 0).

(b) (3, 9) and (−4,−12).

2.6 The subspace of <3 spanned by (4/5, 0,−3/5) and (0, 1, 0) is a plane passing

through the origin, denoted as S. Decompose u = (1, 2, 3) as u = w + e, where

w is the orthogonal projection of u onto S and e is orthogonal to S.

2.7 Transform the basis {u1,u2,u3,u4} into an orthogonal set, where u1 = (0, 2, 1, 0),

u2 = (1,−1, 0, 0), u3 = (1, 2, 0,−1), and u4 = (1, 0, 0, 1).

2.8 Find the least squares regression line of y on x and its residual vector. Compare

your result with that of Section 2.5.
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3 Matrix

A matrix A is an n× k rectangular array

A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...

an1 an2 · · · ank


with the (i, j)th element aij . The i th row of A is ai = (ai1, ai2, . . . , aik), and the j th

column of A is

aj =


a1j

a2j
...

anj

 .

When n = k = 1, A becomes a scalar ; when n = 1 (k = 1), A is simply a row (column)

vector. Hence, a matrix can also be viewed as a collection of vectors. In what follows,

a matrix is denoted by capital letters in boldface. It is also quite common to treat a

column vector as an n× 1 matrix so that matrix operations can be applied directly.

3.1 Basic Matrix Types

We first discuss some general types of matrices. A matrix is a square matrix if the

number of rows equals the number of columns. A matrix is a zero matrix if its elements

are all zeros. A diagonal matrix is a square matrix such that aij = 0 for all i 6= j and

aii 6= 0 for some i, i.e.,

A =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 .

When aii = c for all i, it is a scalar matrix; when c = 1, it is the identity matrix, denoted

as I. A lower triangular matrix is a square matrix of the following form:

A =


a11 0 · · · 0

a21 a22 · · · 0
...

...
. . .

...

an1 an2 · · · ann

 ;

c© Chung-Ming Kuan, 2001, 2009



3.2 Matrix Operations 17

similarly, an upper triangular matrix is a square matrix with the non-zero elements

located above the main diagonal. A symmetric matrix is a square matrix such that

aij = aji for all i, j.

3.2 Matrix Operations

Let A = (aij) and B = (bij) be two n× k matrices. A and B are equal if aij = bij for

all i, j. The sum of A and B is the matrix A + B = C with cij = aij + bij for all i, j.

Now let A be n× k, B be k ×m, and h be a scalar. The scalar multiplication of A is

the matrix hA = C with cij = haij for all i, j. The product of A and B is the n ×m

matrix AB = C with cij =
∑k

s=1 aisbsj for all i, j. That is, cij is the inner product

of the i th row of A and the j th column of B. This shows that matrix multiplication

AB is well defined only when the number of columns of A is the same as the number

of rows of B.

Let A, B, and C denote matrices and h and k denote scalars. Matrix addition and

multiplication have the following properties:

1. A + B = B + A;

2. A + (B + C) = (A + B) + C;

3. A + o = A, where o is a zero matrix;

4. A + (−A) = o;

5. hA = Ah;

6. h(kA) = (hk)A;

7. h(AB) = (hA)B = A(hB);

8. h(A + B) = hA + hB;

9. (h + k)A = hA + kA;

10. A(BC) = (AB)C;

11. A(B + C) = AB + AC.

Note, however, that matrix multiplication is not commutative, i.e., AB 6= BA. For

example, if A is n×k and B is k×n, then AB and BA do not even have the same size.

Also note that AB = o does not imply that A = o or B = o, and that AB = AC

does not imply B = C.
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3.3 Scalar Functions of Matrix Elements 18

Let A be an n× k matrix. The transpose of A, denoted as A′, is the k × n matrix

whose i th column is the i th row of A. Clearly, a symmetric matrix is such that A = A′.

Matrix transposition has the following properties:

1. (A′)′ = A;

2. (A + B)′ = A′ + B′;

3. (AB)′ = B′A′.

If A and B are two n-dimensional column vectors, then A′ and B′ are row vectors so

that A′B = B′A is nothing but the inner product of A and B. Note, however, that

A′B 6= AB′, where AB′ is an n× n matrix, also known as the outer product of A and

B.

Let A be n×k and B be m× r. The Kronecker product of A and B is the nm×kr

matrix:

C = A⊗B =


a11B a12B · · · a1kB

a21B a22B · · · a2kB
...

...
. . .

...

an1B an2B · · · ankB

 .

The Kronecker product has the following properties:

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD);

2. A⊗ (B ⊗C) = (A⊗B)⊗C;

3. (A⊗B)′ = A′ ⊗B′;

4. (A + B)⊗ (C + D) = (A⊗C) + (B ⊗C) + (A⊗D) + (B ⊗D).

It should be clear that the Kronecker product is not commutative: A ⊗B 6= B ⊗A.

Let A and B be two n× k matrices, the Hadamard product (direct product) of A and

B is the matrix A ∗B = C with cij = aijbij .

3.3 Scalar Functions of Matrix Elements

Scalar functions of a matrix summarize various characteristics of matrix elements. An

important scalar function is the determinant function. Formally, the determinant of a

square matrix A, denoted as det(A), is the sum of all signed elementary products from

A. To avoid excessive mathematical notations and definitions, we shall not discuss this
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3.3 Scalar Functions of Matrix Elements 19

definition; readers are referred to Anton (1981) and Basilevsky (1983) for more details.

In what follows we first describe how determinants can be evaluated and then discuss

their properties.

Given a square matrix A, the minor of entry aij , denoted as Mij , is the determinant

of the submatrix that remains after the i th row and j th column are deleted from A. The

number (−1)i+jMij is called the cofactor of entry aij , denoted as Cij . The determinant

can be computed as follows; we omit the proof.

Theorem 3.1 Let A be an n× n matrix. Then for each 1 ≤ i ≤ n and 1 ≤ j ≤ n,

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin,

where Cij is the cofactor of aij.

This method is known as the cofactor expansion along the i th row. Similarly, the

cofactor expansion along the j th column is

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj .

In particular, when n = 2, det(A) = a11a22 − a12a21, a well known formula for 2 × 2

matrices. Clearly, if A contains a zero row or column, its determinant must be zero.

It is now not difficult to verify that the determinant of a diagonal or triangular

matrix is the product of all elements on the main diagonal, i.e., det(A) =
∏

i aii. Let

A be an n× n matrix and h a scalar. The determinant has the following properties:

1. det(A) = det(A′).

2. If A∗ is obtained by multiplying a row (column) of A by h, then det(A∗) =

h det(A).

3. If A∗ = h A, then det(A∗) = hn det(A).

4. If A∗ is obtained by interchanging two rows (columns) of A, then det(A∗) =

−det(A).

5. If A∗ is obtained by adding a scalar multiple of one row (column) to another row

(column) of A, then det(A∗) = det(A).

6. If a row (column) of A is linearly dependent on the other rows (columns), det(A) =

0.

7. det(AB) = det(A) det(B).
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8. det(A⊗B) = det(A)n det(B)m, where A is n× n and B is m×m.

The trace of an n × n matrix A is the sum of diagonal elements, i.e., trace(A) =∑n
i=1 aii. Clearly, the trace of the identity matrix is the number of its rows (columns).

Let A and B be two n × n matrices and h and k are two scalars. The trace function

has the following properties:

1. trace(A) = trace(A′);

2. trace(hA + kB) = h trace(A) + k trace(B);

3. trace(AB) = trace(BA);

4. trace(A⊗B) = trace(A) trace(B), where A is n× n and B is m×m.

3.4 Matrix Rank

Given a matrix A, the row (column) space is the space spanned by the row (column)

vectors. The dimension of the row (column) space of A is called the row rank (column

rank) of A. Thus, the row (column) rank of a matrix is determined by the number of

linearly independent row (column) vectors in that matrix. Suppose that A is an n× k

(k ≤ n) matrix with row rank r ≤ n and column rank c ≤ k. Let {u1, . . . ,ur} be a

basis for the row space. We can then write each row as

ai = bi1u1 + bi2u2 + · · ·+ birur, i = 1, . . . , n,

with the j th element

aij = bi1u1j + bi2u2j + · · ·+ birurj , i = 1, . . . , n.

As a1j , . . . , anj form the j th column of A, each column of A is thus a linear combination

of r vectors: b1, . . . , br. It follows that the column rank of A, c, is less than the row

rank of A, r. Similarly, the column rank of A′ is less than the row rank of A′. Note

that the column (row) space of A′ is nothing but the row (column) space of A. Thus,

the row rank of A, r, is less than the column rank of A, c. Combining these results we

have the following conclusion.

Theorem 3.2 The row rank and column rank of a matrix are equal.

In the light of Theorem 3.2, the rank of a matrix A is defined to be the dimension of

the row (or column) space of A, denoted as rank(A). A square n× n matrix A is said

to be of full rank if rank(A) = n.
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Let A and B be two n × k matrices and C be a k ×m matrix. The rank has the

following properties:

1. rank(A) = rank(A′);

2. rank(A + B) ≤ rank(A) + rank(B);

3. rank(A−B) ≥ | rank(A)− rank(B)|;

4. rank(AC) ≤ min(rank(A), rank(C));

5. rank(AC) ≥ rank(A) + rank(C)− k;

6. rank(A⊗B) = rank(A) rank(B), where A is m× n and B is p× q.

3.5 Matrix Inversion

For any square matrix A, if there exists a matrix B such that AB = BA = I, then

A is said to be invertible, and B is the inverse of A, denoted as A−1. Note that A−1

need not exist; if it does, it is unique. (Verify!) An invertible matrix is also known as a

nonsingular matrix; otherwise, it is singular. Let A and B be two nonsingular matrices.

Matrix inversion has the following properties:

1. (AB)−1 = B−1A−1;

2. (A−1)′ = (A′)−1;

3. (A−1)−1 = A;

4. det(A−1) = 1/ det(A);

5. (A⊗B)−1 = A−1 ⊗B−1;

6. (Ar)−1 = (A−1)r.

An n×n matrix is an elementary matrix if it can be obtained from the n×n identity

matrix In by a single elementary operation. By elementary row (column) operations

we mean:

• Multiply a row (column) by a non-zero constant.

• Interchange two rows (columns).

• Add a scalar multiple of one row (column) to another row (column).
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The matrices below are examples of elementary matrices:
1 0 0

0 −2 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


1 0 4

0 1 0

0 0 1

 .

It can be verified that pre-multiplying (post-multiplying) a matrix A by an elementary

matrix is equivalent to performing an elementary row (column) operation on A. For

an elementary matrix E, there is an inverse operation, which is also an elementary

operation, on E to produce I. Let E∗ denote the elementary matrix associated with

the inverse operation. Then, E∗E = I. Likewise, EE∗ = I. This shows that E is

invertible and E∗ = E−1. Matrices that can be obtained from one another by finitely

many elementary row (column) operations are said to be row (column) equivalent. The

result below is useful in practice; we omit the proof.

Theorem 3.3 Let A be a square matrix. The following statements are equivalent.

(a) A is invertible (nonsingular).

(b) A is row (column) equivalent to I.

(c) det(A) 6= 0.

(d) A is of full rank.

Let A be a nonsingular n× n matrix, B an n× k matrix, and C an n× n matrix. It is

easy to verify that rank(B) = rank(AB) and trace(A−1CA) = trace(C).

When A is row equivalent to I, then there exist elementary matrices E1, . . . ,Er

such that Er · · ·E2E1A = I. As elementary matrices are invertible, pre-multiplying

their inverses on both sides yields

A = E−1
1 E−1

2 · · ·E−1
r , A−1 = Er · · ·E2E1I.

Thus, the inverse of a matrix A can be obtained by performing finitely many elementary

row (column) operations on the augmented matrix [A : I]:

Er · · ·E2E1[A : I] = [I : A−1].

Given an n× n matrix A, let Cij be the cofactor of aij . The transpose of the matrix of

cofactors, (Cij), is called the adjoint of A, denoted as adj(A). The inverse of a matrix

can also be computed using its adjoint matrix, as shown in the following result; for a

proof see Anton (1981, p. 81).
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Theorem 3.4 Let A be an invertible matrix, then

A−1 =
1

det(A)
adj(A).

For a rectangular n × k matrix A, the left inverse of A is a k × n matrix A−1
L

such that A−1
L A = Ik, and the right inverse of A is a k × n matrix A−1

R such that

AA−1
R = In. The left inverse and right inverse are not unique, however. Let A be an

n× k matrix. We now present an important result without a proof.

Theorem 3.5 Given an n× k matrix,

(a) A has a left inverse if, and only if, rank(A) = k ≤ n, and

(b) A has a right inverse if, and only if, rank(A) = n ≤ k.

If an n × k matrix A has both left and right inverses, then it must be the case that

k = n and

A−1
L = A−1

L AA−1
R = A−1

R .

Hence, A−1
L A = AA−1

L = I so that A−1
R = A−1

L = A−1.

Theorem 3.6 If A has both left and right inverses, then A−1
L = A−1

R = A−1.

3.6 Statistical Applications

Given an n× 1 matrix of random variables x, IE(x) is the n× 1 matrix containing the

expectations of xi. Let ` denote the vector of ones. The variance-covariance matrix of

x is the expectation of the outer product of x− IE(x):

var(x) = IE[(x− IE(x))(x− IE(x))′]

=


var(x1) cov(x1, x2) · · · cov(x1, xn)

cov(x2, x1) var(x2) · · · cov(x2, xn)
...

...
. . .

...

cov(xn, x1) cov(xn, x2) · · · var(xn)

 .

As cov(xi, xj) = cov(xj , xi), var(x) must be symmetric. If cov(xi, xj) = 0 for all i 6= j

so that xi and xj are uncorrelated, then var(x) is diagonal. When a component of x, say

xi, is non-stochastic, we have var(xi) = 0 and cov(xi, xj) = 0 for all j 6= i. In this case,
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det(var(x)) = 0 by Theorem 3.1, so that var(x) is singular. It is straightforward to verify

that for a square matrix A, IE[trace(A)] = trace(IE[A]), but IE[det(A)] 6= det(IE[A]).

Let h be a non-stochastic scalar and x an n×1 matrix (vector) of random variables.

We have IE(hx) = h IE(x) and for Σ = var(x),

var(hx) = IE[h2(x− IE(x))(x− IE(x))′] = h2Σ.

For a non-stochastic n×1 matrix a, a′x is a linear combination of the random variables

in x, and hence a random variable. We then have IE(a′x) = a′ IE(x) and

var(a′x) = IE[a′(x− IE(x))(x− IE(x))′a] = a′Σa,

which are scalars. Similarly, for a non-stochastic m × n matrix A, IE(Ax) = A IE(x)

and var(Ax) = AΣA′. Note that when A is not of full row rank, rank(AΣA′) =

rank(A) < m. Thus, Ax is degenerate in the sense that var(Ax) is a singular matrix.

Exercises

3.1 Consider two matrices:

A =


2 4 5

1 1 2

0 6 8

 , B =


2 2 9

6 1 6

5 1 0

 .

Show that AB 6= BA.

3.2 Find two non-zero matrices A and B such that AB = o.

3.3 Find three matrices A, B, and C such that AB = AC but B 6= C.

3.4 Let A be a 3 × 3 matrix. Apply the cofactor expansion along the first row of A

to obtain a formula for det(A).

3.5 Let X be an n× k matrix with rank k < n. Find trace(X(X ′X)−1X ′).

3.6 Let X be an n× k matrix with rank(X) = rank(X ′X) = k < n. Find

rank(X(X ′X)−1X ′).

3.7 Let A be a symmetric matrix. Show that when A is invertible, A−1 and adj(A)

are also symmetric.
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3.8 Apply Theorem 3.4 to find the inverse of

A =

[
a11 a12

a21 a22

]
.
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4 Linear Transformation

There are two ways to relocate a vector v: transforming v to a new position and

transforming the associated coordinate axes or basis.

4.1 Change of Basis

Let B = {u1, . . . ,uk} be a basis for a vector space V . Then v ∈ V can be written as

v = c1u1 + c2u2 + · · ·+ ckuk.

The coefficients c1, . . . , ck form the coordinate vector of v relative to B. We write [v]B
as the coordinate column vector relative to B. Clearly, if B is the collection of Cartesian

unit vectors, then [v]B = v.

Consider now a two-dimensional space with an old basis B = {u1,u2} and a new

basis B′ = {w1,w2}. Then,

u1 = a1w1 + a2w2, u2 = b1w1 + b2w2,

so that

[u1]B′ =

[
a1

a2

]
, [u2]B′ =

[
b1

b2

]
.

For v = c1u1 + c2u2, we can write this vector in terms of the new basis vectors as

v = c1(a1w1 + a2w2) + c2(b1w1 + b2w2)

= (c1a1 + c2b1)w1 + (c1a2 + c2b2)w2.

It follows that

[v]B′ =

[
c1a1 + c2b1

c1a2 + c2b2

]
=

[
a1 b1

a2 b2

][
c1

c2

]
=
[
[u1]B′ : [u2]B′

]
[v]B,

where P is called the transition matrix from B to B′. That is, the new coordinate

vector can be obtained by pre-multiplying the old coordinate vector by the transition

matrix P , where the column vectors of P are the coordinate vectors of the old basis

vectors relative to the new basis.

More generally, let B = {u1, . . . ,uk} and B′ = {w1, . . . ,wk}. Then [v]B′ = P [v]B
with the transition matrix

P =
[
[u1]B′ : [u2]B′ : · · · : [uk]B′

]
.

The following examples illustrate the properties of P .
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Examples:

1. Consider two bases: B = {u1,u2} and B′ = {w1,w2}, where

u1 =

[
1

0

]
, u2 =

[
0

1

]
, w1 =

[
1

1

]
, w2 =

[
2

1

]
.

As u1 = −w1 + w2 and u2 = 2w1 −w2, we have

P =

[
−1 2

1 −1

]
.

If

v =

[
7

2

]
,

then [v]B = v and

[v]B′ = Pv =

[
−3

5

]
.

Similarly, we can show the transition matrix from B′ to B is

Q =

[
1 2

1 1

]
.

It is interesting to note that PQ = QP = I so that Q = P−1.

2. Rotation of the standard xy-coordinate system counterclockwise about the origin

through an angle θ to a new x′y′-system such that the angle between basis vectors

and vector lengths are preserved. Let B = {u1,u2} and B′ = {w1,w2} be the

bases for the old and new systems, respectively, where u and w are associated

unit vectors. Note that

[u1]B′ =

[
cos θ

− sin θ

]
, [u2]B′ =

[
cos(π/2− θ)

sin(π/2− θ)

]
=

[
sin θ

cos θ

]
.

Thus,

P =

[
cos θ sin θ

− sin θ cos θ

]
.
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Similarly, the transition matrix from B′ to B is

P−1 =

[
cos θ − sin θ

sin θ cos θ

]
.

It is also interesting to note that P−1 = P ′; this property does not hold in the

first example, however.

More generally, we have the following result; the proof is omitted.

Theorem 4.1 If P is the transition matrix from a basis B to a new basis B′, then

P is invertible and P−1 is the transition matrix from B′ to B. If both B and B′ are

orthonormal, then P−1 = P ′.

4.2 Systems of Linear Equations

Let y be an n× 1 matrix, x an m× 1 matrix, and A an n×m matrix. Then, Ax = y

(Ax = o) represents a non-homogeneous (homogeneous) system of n linear equations

with m unknowns. A system of equations is said to be inconsistent if it has no solution,

and a system is consistent if it has at least one solution. A non-homogeneous system

has either no solution, exactly one solution or infinitely many solutions. On the other

hand, a homogeneous system has either the trivial solution (i.e., x = 0) or infinitely

many solutions (including the trivial solution), and hence must be consistent.

Consider the following examples:

1. No solution: The system

x1 + x2 = 4,

2x1 + 2x2 = 7,

involves two parallel lines, and hence has no solution.

2. Exactly one solution: The system

x1 + x2 = 4,

2x1 + 3x2 = 8,

has one solution: x1 = 4, x2 = 0. That is, these two lines intersect at (4, 0).
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3. Infinitely many solutions: The system

x1 + x2 = 4,

2x1 + 2x2 = 8,

yields only one line, and hence has infinitely many solutions.

4.3 Linear Transformation

Let V and W be two vector spaces and T : V → W is a function mapping V into

W . T is said to be a linear transformation if T (u + v) = T (u) + T (v) for all u,v

in V and T (hu) = hT (u) for all u in V and all scalars h. Note that T (o) = o and

T (−u) = −T (u). Let A be a fixed n × m matrix. Then T : <m → <n such that

T (u) = Au is a linear transformation.

Let T : <2 → <2 denote the multiplication by a 2× 2 matrix A.

1. Identity transformation—mapping each point into itself: A = I.

2. Reflection about the y-axis—mapping (x, y) to (−x, y):

A =

[
−1 0

0 1

]
.

3. Reflection about the x-axis—mapping (x, y) to (x,−y):

A =

[
1 0

0 −1

]
.

4. Reflection about the line x = y— mapping (x, y) to (y, x):

A =

[
0 1

1 0

]
.

5. Rotation counterclockwise through an angle θ:

A =

[
cos θ − sin θ

sin θ cos θ

]
.
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Let φ denote the angle between the vector v = (x, y) and the positive x-axis and

ν denote the norm of v. Then x = ν cos φ and y = ν sinφ, and

Av =

[
x cos θ − y sin θ

x sin θ + y cos θ

]

=

[
ν cos φ cos θ − ν sin φ sin θ

ν cos φ sin θ + ν sinφ cos θ

]

=

[
ν cos(φ + θ)

ν sin(φ + θ)

]
.

Rotation through an angle −θ can then be obtained by multiplication of

A =

[
cos θ sin θ

− sin θ cos θ

]
.

Note that the orthogonal projection and the mapping of a vector into its coordinate

vector with respect to a basis are also linear transformations.

If T : V → W is a linear transformation, the set {v ∈ V : T (v) = o} is called the

kernel or null space of T , denoted as ker(T ). The set {w ∈ W : T (v) = w for some v ∈
V } is the range of T , denoted as range(T ). Clearly, the kernel and range of T are both

closed under vector addition and scalar multiplication, and hence are subspaces of V

and W , respectively. The dimension of the range of T is called the rank of T , and the

dimension of the kernel is called the nullity of T .

Let T : <m → <n denote multiplication by an n × m matrix A. Note that y is a

linear combination of the column vectors of A if, and only if, it can be expressed as the

consistent linear system Ax = y:

x1a1 + x2a2 + · · ·+ xmam = y,

where aj is the j th column of A. Thus, range(T ) is also the column space of A, and

the rank of T is the column rank of A. The linear system Ax = y is therefore a linear

transformation of x ∈ V to some y in the column space of A. It is also clear that ker(T )

is the solution space of the homogeneous system Ax = o.

Theorem 4.2 If T : V → W is a linear transformation, where V is an m-dimensional

space, then

dim(range(T )) + dim(ker(T )) = m,

i.e., rank(T ) + nullity of T = m.

c© Chung-Ming Kuan, 2001, 2009



4.3 Linear Transformation 31

Proof: Suppose first that the kernel of T has the dimension 1 ≤ dim(ker(T )) = r < m

and a basis {v1, . . . ,vr}. Then by Theorem 2.3, this set can be enlarged such that

{v1, . . . ,vr,vr+1, . . . ,vm} is a basis for V . Let w be an arbitrary vector in range(T ),

then w = T (u) for some u ∈ V , where u can be written as

u = c1v1 + · · ·+ crvr + cr+1vr+1 + · · ·+ cmvm.

As {v1, . . . ,vr} is in the kernel, T (v1) = · · · = T (vr) = o so that

w = T (u) = cr+1T (vr+1) + · · ·+ cmT (vm).

This shows that S = {T (vr+1), . . . , T (vm)} spans range(T ). If we can show that S is

an independent set, then S is a basis for range(T ), and consequently,

dim(range(T )) + dim(ker(T )) = (m− r) + r = m.

Observe that for

o = hr+1T (vr+1) + · · ·+ hmT (vm) = T (hr+1vr+1 + · · ·+ hmvm),

hr+1vr+1 + · · ·+ hmvm is in the kernel of T . Then for some h1, . . . , hr,

hr+1vr+1 + · · ·+ hmvm = h1v1 + · · ·+ hrvr.

As {v1, . . . ,vr,vr+1, . . . ,vm} is a basis for V , all h’s of this equation must be zero. This

proves that S is an independent set. We now prove the assertion for dim(ker(T )) = m.

In this case, ker(T ) must be V , and for every u ∈ V , T (u) = o. That is, range(T ) = {o}.
The proof for the case dim(ker(T )) = 0 is left as an exercise. 2

The next result follows straightforwardly from Theorem 4.2.

Corollary 4.3 Let A be an n × m matrix. The dimension of the solution space of

Ax = o is m− rank(A).

Hence, given an n×m matrix, the homogeneous system Ax = o has the trivial solution

if rank(A) = m. When A is square, Ax = o has the trivial solution if, and only if, A

is nonsingular; when A has rank m < n, A has a left inverse by Theorem 3.5 so that

Ax = o also has the trivial solution. This system has infinitely many solutions if A is

not of full column rank. This is the case when the number of unknowns is greater than

the number of equations (rank(A) ≤ n < m).

Theorem 4.4 Let A∗ = [A : y]. The non-homogeneous system Ax = y is consistent

if, and only if, rank(A) = rank(A∗).
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Proof: Let x∗ be the (m + 1)-dimensional vector containing x and −1. If Ax = y

has a solution, A∗x∗ = o has a non-trivial solution so that A∗ is not of full column

rank. Since rank(A) ≤ rank(A∗), we must have rank(A) = rank(A∗). Conversely, if

rank(A) = rank(A∗), then by the definition of A∗, y must be in the column space of

A. Thus, Ax = y has a solution. 2

For an n×m matrix A, the non-homogeneous system Ax = y has a unique solution if,

and only if, rank(A) = rank(A∗) = m. If A is square, x = A−1y is of course unique.

If A is rectangular with rank m < n, x = A−1
L y. Given that AL is not unique, suppose

that there are two solutions x1 and x2. We have

A(x1 − x2) = y − y = o.

Hence, x1 and x2 must coincide, and the solution is also unique. If A is rectangular

with rank n < m, x0 = A−1
R y is clearly a solution. In contrast with the previous case,

this solution is not unique because A is not of full column rank so that A(x1−x2) = o

has infinitely many solutions. If rank(A) < rank(A∗), the system is inconsistent.

If linear transformations are performed in succession using matrices A1, . . . ,Ak,

they are equivalent to the transformation based on a single matrix A = AkAk−1 · · ·A1,

i.e., AkAk−1 · · ·A1x = Ax. As A1A2 6= A2A1 in general, changing the order of Ai

matrices results in different transformations. We also note that Ax = o if, and only if,

x is orthogonal to every row vector of A, or equivalently, every column vector of A′.

This shows that the null space of A and the range space of A′ are orthogonal.

Exercises

4.1 Let T : <4 → <3 denote multiplication by
4 1 −2 −3

2 1 1 −4

6 0 −9 9

 .

Which of the following vectors are in range(T ) or ker(T )?


0

0

6

 ,


1

3

0

 ,


2

4

1

 ,


3

−8

2

0

 ,


0

0

0

1

 ,


0

−4

1

0

 .
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4.2 Find the rank and nullity of T : <n → <n defined by: (i) T (u) = u, (ii) T (u) = o,

(iii) T (u) = 3u.

4.3 Each of the following matrices transforms a point (x, y) to a new point (x′, y′):[
2 0

0 1

]
,

[
1 0

0 1/2

]
,

[
1 2

0 1

]
,

[
1 0

1/2 1

]
.

Draw figures to show these (x, y) and (x′, y′).

4.4 Consider the vector u = (2, 1) and matrices

A1 =

[
1 2

0 1

]
, A2 =

[
0 1

1 0

]
.

Find A1A2u and A2A1u and draw a figure to illustrate the transformed points.
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5 Special Matrices

In what follows, we treat an n-dimensional vector as an n×1 matrix and use these terms

interchangeably. We also let span(A) denote the column space of A. Thus, span(A′) is

the row space of A.

5.1 Symmetric Matrix

We have learned that a matrix A is symmetric if A = A′. Let A be an n × k matrix.

Then, A′A is a k × k symmetric matrix with the (i, j) thelement a′iaj , where ai is the

i thcolumn of A. If A′A = o, then all the main diagonal elements are a′iai = ‖ai‖2 = 0.

It follows that all columns of A are zero vectors and hence A = o.

As A′A is symmetric, its row space and column space are the same. If x ∈
span(A′A)⊥, i.e., (A′A)x = o, then x′(A′A)x = (Ax)′(Ax) = 0 so that Ax = o.

That is, x is orthogonal to every row vector of A, and x ∈ span(A′)⊥. This shows

span(A′A)⊥ ⊆ span(A′)⊥. Conversely, if Ax = o, then (A′A)x = o. This shows

span(A′)⊥ ⊆ span(A′A)⊥. We have established:

Theorem 5.1 Let A be an n× k matrix. Then the row space of A is the same as the

row space of A′A.

Similarly, the column space of A is the same as the column space of AA′. It follows

from Theorem 3.2 and Theorem 5.1 that:

Theorem 5.2 Let A be an n× k matrix. Then rank(A) = rank(A′A) = rank(AA′).

In particular, if A is of rank k < n, then A′A is of full rank k so that A′A is nonsingular,

but AA′ is not of full rank, and hence a singular matrix.

5.2 Skew-Symmetric Matrix

A square matrix A is said to be skew symmetric if A = −A′. Note that for any square

matrix A, A −A′ is skew-symmetric and A + A′ is symmetric. Thus, any matrix A

can be written as

A =
1
2
(A−A′) +

1
2
(A + A′).

As the main diagonal elements are not altered by transposition, a skew-symmetric ma-

trix A must have zeros on the main diagonal so that trace(A) = 0. It is also easy to
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verify that the sum of two skew-symmetric matrices is skew-symmetric and that the

square of a skew-symmetric (or symmetric) matrix is symmetric because

A2 = (A′A′)′ = ((−A)(−A))′ = (A2)′.

An interesting property of an n×n skew-symmetric matrix A is that A is singular if n

is odd. To see this, note that

det(A) = det(−A′) = (−1)n det(A).

When n is odd, det(A) = −det(A) so that det(A) = 0. By Theorem 3.3, A is singular.

5.3 Quadratic Form and Definite Matrix

Recall that a second order polynomial in the variables x1, . . . , xn is
n∑

i=1

n∑
j=1

aijxixj ,

which can be expressed as a quadratic form: x′Ax, where x is n×1 and A is n×n. We

know that an arbitrary square matrix A can be written as the sum of a symmetric matrix

S and a skew-symmetric matrix S∗. It is easy to verify that x′S∗x = 0. (Check!) It is

therefore without loss of generality to consider quadratic forms x′Ax with a symmetric

A.

The quadratic form x′Ax is said to be positive definite (semi-definite) if, and only

if, x′Ax > (≥) 0 for all x 6= o. A square matrix A is said to be positive definite

if its quadratic form is positive definite. Similarly, a matrix A is said to be negative

definite (semi-definite) if, and only if, x′Ax < (≤) 0 for all x 6= o. A matrix that is not

definite or semi-definite is indefinite. A symmetric and positive semi-definite matrix is

also known as a Grammian matrix. It can be shown that A is positive definite if, and

only if, the principal minors,

det(a11), det

(
a11 a12

a21 a22

)
, det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , · · · ,det(A),

are all positive; A is negative definite if, and only if, all the principal minors alternate

in signs:

det(a11) < 0, det

(
a11 a12

a21 a22

)
> 0, det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 < 0, · · · .
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Thus, a positive (negative) definite matrix must be nonsingular, but a positive deter-

minant is not sufficient for a positive definite matrix. The difference between a positive

(negative) definite matrix and a positive (negative) semi-definite matrix is that the

latter may be singular. (Why?)

Theorem 5.3 Let A be positive definite and B be nonsingular. Then B′AB is also

positive definite.

Proof: For any n× 1 matrix y 6= o, there exists x 6= o such that B−1x = y. Hence,

y′B′ABy = x′B−1′(B′AB)B−1x = x′Ax > 0. 2

It follows that if A is positive definite, A−1 exists and A−1 = A−1A′(A′)−1 is also

positive definite. It can be shown that a symmetric matrix is positive definite if, and

only if, it can be factored as P ′P , where P is a nonsingular matrix. Let A be a

symmetric and positive definite matrix so that A = P ′P and A−1 = P−1P−1′. For

any vector x and w, let u = Px and v = P−1′w. Then

(x′Ax)(w′A−1w) = (x′P ′Px)(w′P−1P−1′w)

= (u′u)(v′v)

≥ (u′v)2

= (x′w)2.

This result can be viewed as a generalization of the Cauchy-Schwartz inequality:

(x′w)2 ≤ (x′Ax)(w′A−1w).

5.4 Differentiation Involving Vectors and Matrices

Let x be an n× 1 matrix, f(x) a real function, and f(x) a vector-valued function with

elements f1(x), . . . , fm(x). Then

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xn

 , ∇xf(x) =


∂f1(x)

∂x1

∂f2(x)
∂x1

· · · ∂fm(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

· · · ∂fm(x)
∂x2

...
... · · ·

...
∂f1(x)
∂xn

∂f2(x)
∂xn

· · · ∂fm(x)
∂xn

 .

Some particular examples are:

1. f(x) = a′x: ∇xf(x) = a.
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2. f(x) = x′Ax with A an n× n symmetric matrix: As

x′Ax =
n∑

i=1

aiix
2
i + 2

n∑
i=1

n∑
j=i+1

aijxixj ,

∇xf(x) = 2Ax.

3. f(x) = Ax with A an m× n matrix: ∇xf(x) = A′.

4. f(X) = trace(X) with X an n× n matrix: ∇Xf(X) = In.

5. f(X) = det(X) with X an n× n matrix: ∇Xf(X) = det(X) X−1′.

When f(x) = x′Ax with A a symmetric matrix, the matrix of second order derivatives,

also known as the Hessian matrix, is

∇2
xf(x) = ∇x (∇xf(x)) = ∇x(2Ax) = 2A.

Analogous to the standard optimization problem, a necessary condition for maximizing

(minimizing) the quadratic form f(x) = x′Ax is ∇xf(x) = o, and a sufficient condition

for a maximum (minimum) is that the Hessian matrix is negative (positive) definite.

5.5 Idempotent and Nilpotent Matrices

A square matrix A is said to be idempotent if A = A2. Let B and C be two n × k

matrices with rank k < n. An idempotent matrix can be constructed as B(C ′B)−1C ′;

in particular, B(B′B)−1B′ and I are idempotent. We observe that if an idempotent

matrix A is nonsingular, then

I = AA−1 = A2A−1 = A(AA−1) = A.

That is, all idempotent matrices are singular, except the identity matrix I. It is also

easy to see that if A is idempotent, then so is I −A.

A square matrix A is said to be nilpotent of index r > 1 if Ar = o but Ar−1 6= o.

For example, a lower (upper) triangular matrix with all diagonal elements equal to zero

is called a sub-diagonal (super-diagonal) matrix. The sub-diagonal (super-diagonal)

matrix is nilpotent of some index r.

c© Chung-Ming Kuan, 2001, 2009



5.6 Orthogonal Matrix 38

5.6 Orthogonal Matrix

A square matrix A is orthogonal if A′A = AA′ = I, i.e., A−1 = A′. Clearly, when

A is orthogonal, a′iaj = 0 for i 6= j and a′iai = 1. That is, the column (row) vectors

of an orthogonal matrix are orthonormal. For example, the matrices we learned in

Sections 4.1 and 4.3:[
cos θ − sin θ

sin θ cos θ

]
,

[
cos θ sin θ

− sin θ cos θ

]
,

are orthogonal matrices. Given two vectors u and v and their orthogonal transfor-

mations Au and Av. It is easy to see that u′A′Av = u′v and that ‖u‖ = ‖Au‖.
Hence, orthogonal transformations preserve inner products, norms, angles, and dis-

tances. Applying this result to data matrices, we know sample variances, covariances,

and correlation coefficients are invariant with respect to orthogonal transformations.

Note that when A is an orthogonal matrix,

1 = det(I) = det(A) det(A′) = (det(A))2,

so that det(A) = ±1. Hence, if A is orthogonal, det(ABA′) = det(B) for any square

matrix B. If A is orthogonal and B is idempotent, then ABA′ is also idempotent

because

(ABA′)(ABA′) = ABBA′ = ABA′.

That is, pre- and post-multiplying a matrix by orthogonal matrices A and A′ preserves

determinant and idempotency. Also, the product of orthogonal matrices is again an

orthogonal matrix.

A special orthogonal matrix is the permutation matrix which is obtained by rear-

ranging the rows or columns of an identity matrix. A vector’s components are permuted

if this vector is multiplied by a permutation matrix. For example,
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




x1

x2

x3

x4

 =


x2

x1

x4

x3

 .

If A is a permutation matrix, then so is A−1 = A′; if A and B are two permutation

matrices, then AB is also a permutation matrix.
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5.7 Projection Matrix

Let V = V1 ⊕ V2 be a vector space. From Corollary 2.7, we can write y in V as

y = y1 + y2, where y1 ∈ V1 and y2 ∈ V2. For a matrix P , the transformation Py = y1

is called the projection of y onto V1 along V2 if, and only if, Py1 = y1. The matrix P is

called a projection matrix. The projection is said to be an orthogonal projection if, and

only if, V1 and V2 are orthogonal complements. Hence, y1 and y2 are orthogonal. In this

case, P is called an orthogonal projection matrix which projects vectors orthogonally

onto the subspace V1.

Theorem 5.4 P is a projection matrix if, and only if, P is idempotent.

Proof: Let y be a non-zero vector. Given that P is a projection matrix,

Py = y1 = Py1 = P 2y,

so that (P − P 2)y = o. As y is arbitrary, we have P = P 2, an idempotent matrix.

Conversely, if P = P 2,

Py1 = P 2y = Py = y1.

Hence, P is a projection matrix. 2

Let pi denote the i thcolumn of P . By idempotency of P , Ppi = pi, so that pi must

be in V1, the space to which the projection is made.

Theorem 5.5 A matrix P is an orthogonal projection matrix if, and only if, P is

symmetric and idempotent.

Proof: Note that y2 = y − y1 = (I − P )y. If y1 is the orthogonal projection of y,

0 = y′1y2 = y′P ′(I − P )y.

Hence, P ′(I − P ) = o so that P ′ = P ′P and P = P ′P . This shows that P is

symmetric. Idempotency follows from the proof of Theorem 5.4. Conversely, if P is

symmetric and idempotent,

y′1y2 = y′P ′(y − y1) = y′(Py − P 2y) = y′(P − P 2)y = 0.

This shows that the projection is orthogonal. 2

It is readily verified that P = A(A′A)−1A′ is an orthogonal projection matrix,

where A is an n × k matrix with full column rank. Moreover, we have the following

result; see Exercise 5.7
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Theorem 5.6 Given an n×k matrix with full column rank, P = A(A′A)−1A′ orthog-

onally projects vectors in <n onto span(A).

Clearly, if P is an orthogonal projection matrix, then so is I − P , which orthogonally

projects vectors in <n onto span(A)⊥. While span(A) is k-dimensional, span(A)⊥ is

(n− k)-dimensional by Theorem 2.6.

5.8 Partitioned Matrix

A matrix may be partitioned into sub-matrices. Operations for partitioned matrices are

analogous to standard matrix operations. Let A and B be n× n and m×m matrices,

respectively. The direct sum of A and B is defined to be the (n + m) × (n + m)

block-diagonal matrix:

A⊕B =

[
A o

o B

]
;

this can be generalized to the direct sum of finitely many matrices. Clearly, the direct

sum is associative but not commutative, i.e., A⊕B 6= B ⊕A.

Consider the following partitioned matrix:

A =

[
A11 A12

A21 A22

]
.

When either A11 or A22 is nonsingular, we have

det(A) = det(A11) det(A22 −A21A
−1
11 A12),

det(A) = det(A22) det(A11 −A12A
−1
22 A21).

If A11 and A22 are nonsingular, let Q = A11−A12A
−1
22 A21 and R = A22−A21A

−1
11 A12.

The inverse of the partitioned matrix A can be computed as:

A−1 =

[
Q−1 −Q−1A12A

−1
22

−A−1
22 A21Q

−1 A−1
22 −A−1

22 A21Q
−1A12A

−1
22

]

=

[
A−1

11 −A−1
11 A12R

−1A21A
−1
11 −A−1

11 A12R
−1

−R−1A21A
−1
11 R−1

]
.

In particular, if A is block-diagonal so that A12 and A21 are zero matrices, then Q =

A11, R = A22, and

A−1 =

[
A−1

11 0

0 A−1
22

]
.

That is, the inverse of a block-diagonal matrix can be obtained by taking inverses of

each block.
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5.9 Statistical Applications

Consider now the problem of explaining the behavior of the dependent variable y using

k linearly independent, explanatory variables: X = [`,x2, . . . ,xk]. Suppose that these

variables contain n > k observations so that X is an n × k matrix with rank k. The

least squares method is to compute a regression “hyperplane”, ŷ = Xβ, that best fits

the data (y X). Write y = Xβ + e, where e is the vector of residuals. Let

f(β) = (y −Xβ)′(y −Xβ) = y′y − 2y′Xβ + β′X ′Xβ.

Our objective is to minimize f(β), the sum of squared residuals. As X is of rank k,

X ′X is nonsingular. In view of Section 5.4, the first order condition is:

∇βf(β) = −2X ′y + 2(X ′X)β = o,

which yields the solution

β = (X ′X)−1X ′y.

The matrix of the second order derivatives is 2(X ′X), a positive definite matrix. Hence,

the solution β minimizes f(β) and is referred to as the ordinary least squares estimator.

Note that

Xβ = X(X ′X)−1X ′y,

and that X(X ′X)−1X ′ is an orthogonal projection matrix. The fitted regression hy-

perplane is in fact the orthogonal projection of y onto the column space of X. It is also

easy to see that

e = y −X(X ′X)−1X ′y = (I −X(X ′X)−1X ′)y,

which is orthogonal to the column space of X. This fitted hyperplane is the best

approximation of y in terms of the Euclidean norm, based on the “information” of X.

Exercises

5.1 Let A be an n×n skew-symmetric matrix and x be n× 1. Prove that x′Ax = 0.

5.2 Show that a positive definite matrix cannot be singular.

5.3 Consider the quadratic form f(x) = x′Ax such that A is not symmetric. Find

∇xf(x).
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5.4 Let X be an n × k matrix with full column rank and Σ be an n × n symmetric,

positive definite matrix. Show that X(X ′Σ−1X)−1X ′Σ−1 is a projection matrix

but not an orthogonal projection matrix.

5.5 Let ` be the vector of n ones. Show that ``′/n is an orthogonal projection matrix.

5.6 Let S1 and S2 be two subspaces of V such that S2 ⊆ S1. Let P 1 and P 2 be two

orthogonal projection matrices projecting vectors onto S1 and S2, respectively.

Find P 1P 2 and (I − P 2)(I − P 1).

5.7 Prove Theorem 5.6.

5.8 Given a dependent variable y and an explanatory variable `, the vector of n

ones. Apply the method in Section 2.4 and the least squares method to find the

orthogonal projection of y on `. Compare your results.
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6 Eigenvalue and Eigenvector

In many applications it is important to transform a large matrix to a matrix of a simpler

structure that preserves important properties of the original matrix.

6.1 Eigenvalue and Eigenvector

Let A be an n × n matrix. A non-zero vector p is said to be an eigenvector of A

corresponding to an eigenvalue λ if

Ap = λp

for some scalar λ. Eigenvalues and eigenvectors are also known as latent roots and latent

vectors (characteristic values and characteristic vectors). In <3, it is clear that when

Ap = λp, multiplication of p by A dilates or contracts p. Note also that eigenvalues of

a matrix need not be distinct; an eigenvalue may be repeated with multiplicity k.

Write (A − λI)p = o. In the light of Section 4.3, this homogeneous system has a

non-trivial solution if

det(A− λI) = o.

The equation above is known as the characteristic polynomial of A, and its roots are

eigenvalues. The solution space of (A − λI)p = o characteristic polynomial is the

eigenspace of A corresponding to λ. By Corollary 4.3, the dimension of the eigenspace

is n−rank(A−λI). Note that if p is an eigenvector of A, then so is cp for any non-zero

scalar c. Hence, it is typical to normalize eigenvectors to unit length.

As an example, consider the matrix

A =


3 −2 0

−2 3 0

0 0 5

 .

It is easy to verify that det(A− λI) = −(λ− 1)(λ− 5)2 = 0. The eigenvalues are thus

1 and 5 (with multiplicity 2). When λ = 1, we have
2 −2 0

−2 2 0

0 0 4




p1

p2

p3

 = o.
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It follows that p1 = p2 = a for any a and p3 = 0. Thus, {(1, 1, 0)′} is a basis of the

eigenspace corresponding to λ = 1. Similarly, when λ = 5,
−2 −2 0

−2 −2 0

0 0 0




p1

p2

p3

 = o.

We have p1 = −p2 = a and p3 = b for any a, b. Hence, {(1,−1, 0)′, (0, 0, 1)′} is a basis

of the eigenspace corresponding to λ = 5.

6.2 Diagonalization

Two n×n matrices A and B are said to be similar if there exists a nonsingular matrix

P such that B = P−1AP , or equivalently PBP−1 = A. The following results show

that similarity transformation preserves many important properties of a matrix.

Theorem 6.1 Let A and B be two similar matrices. Then,

(a) det(A) = det(B).

(b) trace(A) = trace(B).

(c) A and B have the same eigenvalues.

(d) PqB = qA, where qA and qB are eigenvectors of A and B, respectively.

(e) If A and B are nonsingular, then A−1 is similar to B−1.

Proof: Part (a), (b) and (e) are obvious. Part (c) follows because

det(B − λI) = det(P−1AP − λP−1P )

= det(P−1(A− λI)P )

= det(A− λI).

For part (d), we note that AP = PB. Then, APqB = PBqB = λPqB. This shows

that PqB is an eigenvector of A. 2

Of particular interest to us is the similarity between a square matrix and a diagonal

matrix. A square matrix A is said to be diagonalizable if A is similar to a diagonal

matrix Λ, i.e., Λ = P−1AP or equivalently A = PΛP−1 for some nonsingular matrix

P . We also say that P diagonalizes A. When A is diagonalizable, we have

Api = λipi,
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where pi is the i thcolumn of P and λi is the i thdiagonal element of Λ. That is, pi is

an eigenvector of A corresponding to the eigenvalue λi.

When Λ = P−1AP , these eigenvectors must be linearly independent. Conversely,

if A has n linearly independent eigenvectors pi corresponding to eigenvalues λi, i =

1, . . . , n, we can write AP = PΛ, where pi is the i thcolumn of P , and Λ contains

diagonal terms λi. That pi are linearly independent implies that P is invertible. It

follows that P diagonalizes A. We have proved:

Theorem 6.2 Let A be an n× n matrix. A is diagonalizable if, and only if, A has n

linearly independent eigenvectors.

The result below indicates that if A has n distinct eigenvalues, the associated eigen-

vectors are linearly independent.

Theorem 6.3 If p1, . . . ,pn are eigenvectors of A corresponding to distinct eigenvalues

λ1, . . . , λn, then {p1, . . . ,pn} is a linearly independent set.

Proof: Suppose that p1, . . . ,pn are linearly dependent. Let 1 ≤ r < n be the largest

integer such that p1, . . . ,pr are linearly independent. Hence,

c1p1 + · · ·+ crpr + cr+1pr+1 = o,

where ci 6= 0 for some 1 ≤ i ≤ r + 1. Multiplying both sides by A, we obtain

c1λ1p1 + · · ·+ cr+1λr+1pr+1 = o,

and multiplying by λr+1 we have

c1λr+1p1 + · · ·+ cr+1λr+1pr+1 = o.

Their difference is

c1(λ1 − λr+1)p1 + · · ·+ cr(λr − λr+1)pr = o.

As pi are linearly independent and eigenvalues are distinct, c1, . . . , cr must be zero.

Consequently, cr+1pr+1 = 0 so that cr+1 = 0. This contradicts the fact that ci 6= 0 for

some i. 2
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For an n × n matrix A, that A has n distinct eigenvalues is a sufficient (but not

necessary) condition for diagonalizability by Theorem 6.2 and 6.3. When some eigen-

values are equal, however, not much can be asserted in general. When A has n distinct

eigenvalues, Λ = P−1AP by Theorem 6.2. It follows that

det(A) = det(Λ) =
n∏

i=1

λi,

trace(A) = trace(Λ) =
n∑

i=1

λi.

In this case, A is nonsingular if, and only if, its eigenvalues are all non-zero. If we

know that A is nonsingular, then by Theorem 6.1(e), A−1 is similar to Λ−1, and A−1

has eigenvectors pi corresponding to eigenvalues 1/λi. It is also easy to verify that

Λ + cI = P−1(A + cI)P and Λk = P−1AkP .

Finally, we note that when P diagonalizes A, the eigenvectors of A form a new

basis. The n-dimensional vector x can then be expressed as

x = ξ1p1 + · · ·+ ξnpn = Pξ,

where ξ is the new coordinate vector of x. In view of Section 4.1, P is the transition ma-

trix from the new basis to the original Cartesian basis, and P−1 is the transition matrix

from the Cartesian basis to the new basis. Each eigenvector is therefore the coordinate

vector of the Cartesian unit vector with respect to the new basis vectors. Let A denote

the n×n matrix corresponding to a linear transformation with respect to the Cartesian

basis. Also let A∗ denote the matrix corresponding to the same transformation with

respect to the new basis. Then,

A∗ξ = P−1Ax = P−1APξ,

so that A∗ = Λ. Similarly, Ax = PA∗P−1x. Hence, when A is diagonalizable, the

corresponding linear transformation is rather straightforward when x is expressed in

terms of the new basis vector.

6.3 Orthogonal Diagonalization

A square matrix A is said to be orthogonally diagonalizable if there is an orthogonal

matrix P that diagonalizes A, i.e., Λ = P ′AP . In the light of the proof of Theorem 6.2,

we have the following result.

Theorem 6.4 Let A be an n×n matrix. Then A is orthogonally diagonalizable, if and

only if, A has an orthonormal set of n eigenvectors.
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If A is orthogonally diagonalizable, then Λ = P ′AP so that A = PΛP ′ is a symmetric

matrix. The converse is also true, but its proof is more difficult and hence omitted. We

have:

Theorem 6.5 A matrix A is orthogonally diagonalizable if, and only if, A is symmet-

ric.

Moreover, we note that a symmetric matrix A has only real eigenvalues and eigen-

vectors. If an eigenvalue λ of an n×n symmetric matrix A is repeated with multiplicity

k, then in view of Theorem 6.4 and Theorem 6.5, there must exist exactly k orthogonal

eigenvectors corresponding to λ. Hence, this eigenspace is k-dimensional. It follows

that rank(A− λI) = n− k. This implies that when λ = 0 is repeated with multiplicity

k, rank(A) = n− k. This proves:

Theorem 6.6 The number of non-zero eigenvalues of a symmetric matrix A is equal

to rank(A).

When A is orthogonally diagonalizable, we note that

A = PΛP ′ =
n∑

i=1

λipip
′
i,

where pi is the i thcolumn of P . This is known as the spectral (canonical) decomposition

of A which applies to both singular and nonsingular symmetric matrices. It can be seen

that pip
′
i is an orthogonal projection matrix which orthogonally projects vectors onto

pi.

We also have the following results for some special matrices. Let A be an orthogonal

matrix and p be its eigenvector corresponding to the eigenvalue λ. Observe that

p′p = p′A′Ap = λ2p′p.

Thus, the eigenvalues of an orthogonal matrix must be ±1. It can also be shown that

the eigenvalues of a positive definite (semi-definite) matrix are positive (non-negative);

see Exercises 6.1 and 6.2. If A is symmetric and idempotent, then for any x 6= 0,

x′Ax = x′A′Ax ≥ 0.

That is, a symmetric and idempotent matrix must be positive semi-definite and therefore

must have non-negative eigenvalues. In fact, as A is orthogonally diagonalizable, we

have

Λ = P ′AP = P ′APP ′AP = Λ2.

Consequently, the eigenvalues of A must be either 0 or 1.
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6.4 Generalization

Two n-dimensional vectors x and z are said to be orthogonal in the metric B if x′Bz =

0, where B is n × n. A matrix P is orthogonal in the metric B if P ′BP = I, i.e.,

p′iBpi = 1 and p′iBpj = 0 for i 6= j. Consider now the generalized eigenvalue problem

with respect to B:

(A− λB)x = o.

Again, this system has non-trivial solution if det(A − λB) = 0. In this case, λ is an

eigenvalue of A in the metric B and x is an eigenvector corresponding to λ.

Theorem 6.7 Let A be a symmetric matrix and B be a symmetric, positive definite

matrix. Then there exists a diagonal matrix Λ and a matrix P orthogonal in the metric

B such that Λ = P ′AP .

Proof: As B is positive definite, there exists a nonsingular matrix C such that B =

CC ′. Consider the symmetric matrix C−1A(C ′)−1. Then there exists an orthogonal

matrix R such that

R′(C−1A(C ′)−1)R = Λ,

with R′R = I. By letting P = C−1′R, we have P ′AP = Λ and

P ′BP = P ′CC ′P = R′R = I. 2

It follows that A = P−1′ΛP−1 and B = P−1′P−1. Thus, when A is symmetric

and B is symmetric and positive definite, A can be diagonalized by a matrix P that

is orthogonal in the metric B. Note that P is not orthogonal in the usual sense, i.e.,

P ′ 6= P−1. This result shows that for the eigenvalues of A in the metric B, the

associated eigenvectors are orthonormal in the metric B.

6.5 Rayleigh Quotients

Let A be a symmetric matrix. The Rayleigh quotient is

q =
x′Ax

x′x
.

Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A and p1, . . . ,pn be the corresponding

eigenvectors. Let z = P ′x. Then

x′Ax

x′x
=

x′PP ′APP ′x

x′PP ′x
=

z′Λz

z′z
,

c© Chung-Ming Kuan, 2001, 2009



6.6 Vector and Matrix Norms 49

so that the difference between the Rayleigh quotient and the largest eigenvalue is

q − λ1 =
z′(Λ− λ1I)z

z′z
=

(λ2 − λ1)z2
2 + · · ·+ (λn − λ1)z2

n

z2
1 + z2

2 + · · ·+ z2
n

≤ 0.

That is, the Rayleigh quotient q ≤ λ1. Similarly, we can show that q ≥ λn. By setting

x = p1 and x = pn, the resulting Rayleigh quotients are λ1 and λn, respectively. This

proves:

Theorem 6.8 Let A be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Then

λn = min
x6=o

x′Ax

x′x
, λ1 = max

x6=o

x′Ax

x′x
.

6.6 Vector and Matrix Norms

Let V be a vector space. The function ‖ · ‖ : V → [0,∞) is a norm on V if it satisfies

the following properties:

1. ‖v‖ = 0 if, and only if, v = o;

2. ‖u + v‖ ≤ ‖u‖+ ‖v‖;

3. ‖hv‖ = |h|‖v‖, where h is a scalar.

We are already familiar with the Euclidean norm; there are many other norms. For

example, for an n-dimensional vector v, its `1, `2 (Euclidean), and `∞ (maximal) norms

are:

‖v‖1 =
∑n

i=1 |vi|;

‖v‖2 =
(∑n

i=1 v2
i

)1/2;

‖v‖∞ = max1≤i≤n |vi|.

It is easy to verify that these norms satisfy the above properties.

A matrix norm of a matrix A is a non-negative number ‖A‖ such that

1. ‖A‖ = 0 if, and only if, A = o.

2. ‖A + B‖ ≤ ‖A‖+ ‖B‖.

3. ‖hA‖ = |h|‖A‖, where h is a scalar.

4. ‖AB‖ ≤ ‖A‖ ‖B‖.
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A matrix norm ‖A‖ is said to be compatible with a vector norm ‖v‖ if ‖Av‖ ≤ ‖A‖‖v‖.
Thus,

‖A‖ = sup
v 6=o

‖Av‖
‖v‖

is known as a natural matrix norm associated with the vector norm. Let A be an n×n

matrix. The `1, `2, Euclidean, and `∞ norms of A are:

‖A‖1 = max1≤j≤n

∑n
i=1 |aij |;

‖A‖2 = (λ1)
1/2, where λ1 is the largest eigenvalue of A′A;

‖A‖E = trace(A′A)1/2;

‖A‖∞ = max1≤i≤n

∑n
j=1 |aij |.

If A is an n × 1 matrix, these matrix norms are just the corresponding vector norms

defined earlier.

6.7 Statistical Applications

Let x be an n-dimensional normal random vector with mean zero and covariance matrix

In. It is well known that x′x =
∑n

i=1 x2
i is a χ2 random variable with n degrees

of freedom. If A is a symmetric and idempotent matrix with rank r, then it can be

diagonalized by an orthogonal matrix P such that

x′Ax = x′P (P ′AP )P ′x = x′PΛP ′x,

where the diagonal elements of Λ are either zero or one. As orthogonal transformations

preserve rank, Λ must have r eigenvalues equal to one. Let P ′x = y. Then, y is also

normally distributed with mean zero and covariance matrix P ′InP = In. Without loss

of generality we can write

x′PΛP ′x = y′

[
Ir o

o o

]
y =

r∑
i=1

y2
i ,

which is clearly a χ2 random variable with r degrees of freedom.

Exercises

6.1 Show that a matrix is positive definite if, and only if, its eigenvalues are all positive.

6.2 Show that a matrix is positive semi-definite but not positive definite if, and only if,

at least one of its eigenvalue is zero while the remaining eigenvalues are positive.
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6.3 Let A be a symmetric and idempotent matrix. Show that trace(A) is the number

of non-zero eigenvalues of A and rank(A) = trace(A).

6.4 Let P be the orthogonal matrix such that P ′(A′A)P = Λ, where A is n×k with

rank k < n. What are the properties of Z∗ = AP and Z = Z∗Λ−1/2? Note that

the column vectors of Z∗ (Z) are known as the (standardized) principal axes of

A′A.

6.5 Given the information in the question above, show that the non-zero eigenvalues

of A′A and AA′ are equal. Also show that the eigenvectors associated with the

non-zero eigenvalues of AA′ are the standardized principal axes of A′A.

6.6 Given the information in the question above, show that

AA′ =
k∑

i=1

λiziz
′
i,

where zi is the i thcolumn of Z.

6.7 Given the information in the question above, show that the eigenvectors associated

with the non-zero eigenvalues of AA′ and A(A′A)−1A′ are equal.

6.8 Given the information in the question above, show that

A(A′A)−1A′ =
k∑

i=1

ziz
′
i,

where zi is the i thcolumn of Z.
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Answers to Exercises

Chapter 1

1. u + v = (5,−1, 3), u− v = (−3,−5, 1).

2. Let u = (−3, 2, 4), v = (−3, 0, 0) and w = (0, 0, 4). Then ‖u‖ =
√

29, ‖v‖ = 3,

‖w‖ = 4, u · v = 9, u ·w = 16, and v ·w = 0.

3. θ = cos−1
(

13
2
√

77

)
.

4. (2/
√

13, 3/
√

13), (−2/
√

13,−3/
√

13).

5. By the fourth property of inner products, ‖u‖ = (u · u)1/2 = 0 if, and only if,

u = o.

6. By the triangle inequality,

‖u‖ = ‖u− v + v‖ ≤ ‖u− v‖+ ‖v‖,

‖v‖ = ‖v − u + u‖ ≤ ‖v − u‖+ ‖u‖ = ‖u− v‖+ ‖u‖.

The inequality holds as an equality when u and v are linearly dependent.

7. Apply the triangle inequality repeatedly.

8. The Cauchy-Schwartz inequality gives |sx,y| ≤ sxsy; the triangle inequality yields

sx+y ≤ sx + sy.

Chapter 2

1. As a vector space is closed under vector addition, hence for u ∈ V , u + (−u) = o

must be in V .

2. Both (a) and (b) are subspaces of R3 because they are closed under vector addition

and scalar multiplication.

3. Let {u1, . . . ,ur}, r < k, be a set of linearly dependent vectors. Hence, there exist

a1, . . . , ar, which are not all zeros, such that

a1u1 + · · ·+ arur = o.

Thus, a1, . . . , ar together with k − r zeros form a solution to

c1u1 + · · ·+ crur + cr+1ur+1 + · · ·+ ckuk = o.

c© Chung-Ming Kuan, 2001, 2009



6.7 Statistical Applications 53

Hence, S is linearly dependent, proving (a). For part (b), suppose {u1, . . . ,ur},
r < k, is an arbitrary set of linearly dependent vectors. Then S is linearly depen-

dent by (a), contradicting the original hypothesis.

4. Let S = {u1, . . . ,un} be a basis for V and Q = {v1, . . . ,vm} a set in V with

m > n. We can write vi = a1iu1 + · · ·+ aniun for all i = 1, . . . ,m. Hence,

0 = c1v1 + · · ·+ cmvm

= c1(a11u1 + · · ·+ an1un) + c2(a12u1 + · · ·+ an2un) + · · ·+

cm(a1mu1 + · · ·+ anmun)

= (c1a11 + c2a12 + · · ·+ cma1m)u1 + · · ·+

(c1an1 + c2an2 + · · ·+ cmanm)un.

As S is a basis, u1, . . . ,un are linearly dependent so that

c1a11 + c2a12 + · · ·+ cma1m = 0

c1a21 + c2a22 + · · ·+ cma2m = 0

...
...

c1an1 + c2an2 + · · ·+ cmanm = 0.

This is a system of n equations with m unknowns in c. As m > n, this system has

infinitely many solutions. Thus, ci 6= 0 for some i, and Q is linearly dependent.

5. (a) is a basis because a1(2, 1) + a2(3, 0) = 0 implies that a1 = a2 = 0; (b) is not

a basis because there are infinitely many solutions for a1(3, 9) + a2(−4,−12) = 0,

e.g., a1 = 4 and a2 = 3.

6. w = (−4/5, 2, 3/5), e = (9/5, 0, 12/5).

7. v1 = (0, 2, 1, 0), v2 = (1,−1/5, 2/5, 0), v3 = (1/2, 1/2,−1,−1),

v3 = (4/15, 4/15,−8/15, 4/5).

8. The regression line is ŷ = βx with β = y · x/x · x.

Chapter 3

1. It suffices to note that (AB)11 = 53 and (BA)11 = 6. Hence, AB 6= BA.

c© Chung-Ming Kuan, 2001, 2009



6.7 Statistical Applications 54

2. For example,

A =

[
1 2

2 4

]
, B =

[
4 6

−2 −3

]
,

and AB = 0. Note that both matrices are singular.

3. For example,

A =

[
1 2

2 4

]
, B =

[
4

−2

]
, C =

[
6

−3

]
.

Clearly, AB = AC = o, but B 6= C.

4. The cofactors along the first row are

C11 = a22a33 − a23a32, C12 = −(a21a33 − a23a31),

C13 = a21a32 − a22a31.

Thus,

det(A) = a11C11 + a12C12 + a13C13

= a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.

5. trace(X(X ′X)−1X ′) = trace(X ′X(X ′X)−1) = trace(Ik) = k.

6. Apply the inequalities of Section 3.4 repeatedly, we have rank(X(X ′X)−1) = k

and rank(X(X ′X)−1X ′) = k.

7. As A is symmetric, A = A′ so that A−1 = (A′)−1 = (A−1)′ is symmetric. It fol-

lows that adj(A) is also symmetric because A−1 = adj(A)/ det(A). Alternatively,

by evaluating adj(A) directly one can find that the adjoint matrix is symmetric.

8. The adjoint matrix of A is[
a22 −a12

−a21 a11

]
.

Hence,

A−1 =
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
.
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Chapter 4

1. The first three vectors are all in range(T ); the vector (3,−8, 2, 0) is in ker(T ).

2. (i) rank(T ) = n and nullity(T ) = 0.

(ii) rank(T ) = 0 and nullity(T ) = n.

(iii) rank(T ) = n and nullity(T ) = 0.

3. (i) (x, y) → (2x, y) is an expansion in the x-direction with factor 2.

(ii) (x, y) → (x, y/2) is a compression in the y-direction with factor 1/2.

(iii) (x, y) → (x + 2y, y) is a shear in the x-direction with factor 2.

(iv) (x, y) → (x, x/2 + y) is a shear in the y-direction with factor 1/2.

4. A1A2u = (5, 2); A2A1u = (1, 4). These transformations involve a shear in the

x-direction and a reflection about the line x = y; their order does matter.

Chapter 5

1. The elements of a skew-symmetric matrix A are such that aii = 0 for all i and

aij = −aji for all i 6= j. Hence,

x′Ax =
n∑

i=1

aiix
2
i +

n−1∑
i=1

n∑
j=i+1

(aij + aji)xixj = 0.

2. If A is singular, then there exists a x 6= o such that Ax = o. For this particular

x, x′Ax = 0. Hence, A is not positive definite. Note, however, that this does not

violate the condition for positive semi-definiteness.

3. As f(x) =
∑n

i=1

∑n
j=1 aijxixj ,

∇xf(x) =


∑n

j=1(a1j + aj1)xj∑n
j=1(a2j + aj2)xj

...∑n
j=1(anj + ajn)xj

 = (A + A′)x.

4. Clearly, X(X ′Σ−1X)−1X ′Σ−1 is idempotent but not symmetric.

5. It is easy to see that 11′/n is symmetric and idempotent.

6. AS P 2 ∈ S2 ⊆ S1, P 1P 2 = P 2. Similarly, as (I − P 1) ∈ S⊥1 ⊆ S⊥2 , we have

(I − P 2)(I − P 1) = I − P 1.
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7. For any vector y ∈ span(A), we can write y = Ac for some non-zero vector c.

Then, A(A′A)−1A′y = Ac = y; this shows that this transformation is indeed a

projection. For y ∈ span(A)⊥, A′y = o so that A(A′A)−1A′y = o. Hence, the

projection must be orthogonal.

8. As we have only one explanatory variable 1, the orthogonal projection matrix is

1(1′1)−11′ = 11′/n, and the orthogonal projection of y on 1 is (11′/n)y = 1ȳ.

Chapter 6

1. Consider the quadratic form x′Ax. We can take A as a symmetric matrix and let

P orthogonally diagonalize A. For any x 6= o, we can find a y such that x = Py

and

x′Ax = y′P ′APy = y′Λy =
n∑

i=1

λiy
2
i .

Clearly, if λi > 0 for all i, then x′Ax > 0. Conversely, suppose x′Ax > 0 for all

x 6= o. Let ei denote the i thCartesian unit vector. Then for x = Pei, x′Ax > 0

implies λi > 0, i = 1, . . . , n.

2. Without loss of generality assume that λ1 = 0 and that other eigenvalues are

positive. Then in view of the above proof, x′Ax ≥ 0, we have λi ≥ 0. If there is

no λi = 0, then A must be positive definite, contradicting the original hypothesis.

Hence, there must be at least one λi = 0.

3. As the eigenvalues of A are either zero or one, trace(Λ) is just the number of non-

zero eigenvalues (say r). We also know that similarity transformations preserve

rank and trace. It follows that rank(A) = rank(Λ) = r and trace(A) = trace(Λ) =

r.

4. Note that Z∗ and Z are n×k and that their column vectors are linear combinations

of the column vectors of A. Let B = PΛ−1/2. Then A = ZB−1, so that

each column vector of A is a linear combination of the column vectors of Z. As

Z∗′Z∗ = Λ, Z ′Z = Λ−1/2ΛΛ−1/2 = Ik. Hence, the column vectors of Z form an

orthonormal basis of span(A).

5. As rank(AA′) = k, then by Theorem 6.6, AA′ has only k non-zero eigenvalues.

Given (A′A)P = PΛ, we can premultiply and postmultiply this expression by

A and Λ−1/2, respectively, and obtain (AA′)APΛ−1/2 = APΛ−1/2Λ. That is,
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(AA′)Z = ZΛ, where Z contains k orthonormal eigenvectors of AA′, and Λ is

the matrix of non-zero eigenvalues of A′A and AA′.

6. By orthogonal diagonalization, (AA′)C = CD, where

C =
[

Z Z+
]
,D =

[
Λ o

o o

]
,

with Z+ the matrix of eigenvectors associated with the zero eigenvalues of AA′.

Hence,

AA′ = CDC ′ = ZΛZ ′ =
k∑

i=1

λiziz
′
i.

7. It can be seen that

Λ−1/2P ′A′[A(A′A)−1A′]APΛ−1/2 = Λ−1/2P ′(A′A)PΛ−1/2 = Ik.

Hence, Z are also eigenvectors A(A′A)−1A′, corresponding to the eigenvalues

equal to one.

8. As in previous proofs,

A(A′A)−1A′ = ZZ ′ =
k∑

i=1

ziz
′
i.

Note that ziz
′
i orthogonally projects vectors onto zi. Hence, A(A′A)−1A′ or-

thogonally projects vectors onto span(A).
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