NATIONAL TAIWAN UNIVERSITY

Department of Finance: Econometric Theory I — Midterm

Department of Economics: Econometric Theory III — Midterm

Fall 2013

Professor C.-M. Kuan

- 1. (10 points) To estimate the variance-covariance matrix of the OLS estimator in a linear regression model, explain clearly in what case the Eicker-White estimator is to be preferred and also in what case the Newey-West estimator is to be preferred.
- 2. (12 points) Suppose you estimate the model: $y_t = \alpha y_{t-1} + e_t$. What is the probability limit of the OLS estimator $\hat{\alpha}_T$ in the cases below? Let $\{u_t\}$ be a white noise with mean 0 and variance σ_u^2 .
 - (a) y_t are generated as $y_t = u_t, t = 1, \dots, T$.
 - (b) y_t are generated as $y_t = u_t \pi_1 u_{t-1}, t = 1, ..., T$, where $|\pi_1| < 1$.
- 3. (14 points) Suppose y is generated according to the structural change model below with heteroskedastic errors in different periods:

$$oldsymbol{y} = \left[egin{array}{c} oldsymbol{y}_1 \ oldsymbol{y}_2 \end{array}
ight] = \left[egin{array}{c} oldsymbol{X}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{X}_2 \end{array}
ight] \left[egin{array}{c} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{array}
ight] + \left[egin{array}{c} oldsymbol{e}_1 \ oldsymbol{e}_2 \end{array}
ight],$$

where \boldsymbol{y}_1 and \boldsymbol{y}_2 are, respectively, $T_1 \times 1$ and $T_2 \times 1$, \boldsymbol{X}_1 $(T_1 \times k)$ and \boldsymbol{X}_2 $(T_2 \times k)$ are non-stochastic matrices, $\boldsymbol{\beta}_1$ and $\boldsymbol{\beta}_2$ are both $k \times 1$ parameters vectors, and \boldsymbol{e}_1 $(T_1 \times 1)$ and \boldsymbol{e}_2 $(T_2 \times 1)$ are error vectors such that

$$\mathbb{E}\left(\left[\begin{array}{c} \boldsymbol{e}_1\\ \boldsymbol{e}_2\end{array}\right]\right) = \left[\begin{array}{c} \boldsymbol{0}\\ \boldsymbol{0}\end{array}\right], \quad \operatorname{var}\left(\left[\begin{array}{c} \boldsymbol{e}_1\\ \boldsymbol{e}_2\end{array}\right]\right) = \left[\begin{array}{c} \sigma_1^2 \boldsymbol{I}_{T_1} & \boldsymbol{0}\\ \boldsymbol{0} & \sigma_2^2 \boldsymbol{I}_{T_2}\end{array}\right].$$

What is the GLS estimator of $(\beta'_1 \ \beta'_2)'$? How would you implement this GLS estimator? Please give an intuition for this result.

- 4. (30 points) Answer the following questions with "True" or "False". If you answer is "True," explain your answer clearly; if your answer is "False", provide an example or a counterexample.
 - (a) A sequence of i.i.d. random variables must satisfy a strong law of large numbers and a central limit theorem.
 - (b) A biased estimator must be inconsistent.
 - (c) A weakly consistent estimator must be asymptotically normally distributed.
 - (d) If an estimator is $O_p(T^{-1/2})$, it is bounded but does not necessarily converge.
 - (e) If an estimator is $o_p(T^{1/2})$, it may diverge or converge.

- 5. (34 points) Suppose that y_t are generated as an AR(1) process: $y_t = \alpha_o y_{t-1} + u_t$, where α_o is unknown such that $|\alpha_0| < 1$, and $\{u_t\}$ is a white noise with mean 0 and variance σ_u^2 . Now you regress y_t on y_{t-1} and obtain the OLS estimator $\hat{\alpha}_T$.
 - (a) Is $\hat{\alpha}_T$ unbiased for α_o ?
 - (b) What is the asymptotic variance-covariance matrix of $\sqrt{T}(\hat{\alpha}_T \alpha_o)$?
 - (c) How would you test if $\alpha_o = 0.5$? Write down you test statistic and its limiting distribution. All notations must be clearly defined.
 - (d) Does your result in (b) remain the same when u_t are i.i.d. with mean zero and variance σ_u^2 ? In this case, how would you test if $\alpha_o = 0.5$? Write down you test statistic and its limiting distribution.

NATIONAL TAIWAN UNIVERSITY

Department of Finance: Econometric Theory I — Midterm

Department of Economics: Econometric Theory III — Midterm

Fall 2012

Professor C.-M. Kuan

- 1. (12 points) Warm-up question. Let $\widehat{\Sigma}_B$, $\widehat{\Sigma}_P$ and $\widehat{\Sigma}_Q$ be the Newey-West type estimators for the positive definite, covariance matrix Σ_o , computed with, respectively, the Bartlett, Parzen, and quadratic spectral kernel functions. What are the limits of $\widehat{\Sigma}_O^{-1}\widehat{\Sigma}_B$ and $\widehat{\Sigma}_O^{-1}\widehat{\Sigma}_P$?
- 2. (24 points) Answer the following questions with "TRUE" or "FALSE"; explain your answer clearly or illustrate with an example (a counterexample).
 - (a) An unbiased estimator must also be consistent.
 - (b) Given two consistent estimators, their ratio must converges to the ratio of their respective limits.
 - (c) If $\sqrt{T}(\hat{\theta}_T \theta_o)$ is asymptotically normally distributed, we can conclude that $\hat{\theta}_T$ is weakly consistent for θ_o .
 - (d) Let $\widehat{\Sigma}_{EW}$ and $\widehat{\Sigma}_{NW}$ be, respectively, the Eicker-White and Newey-West estimators for the covariance matrix Σ_o . Then, $\widehat{\Sigma}_{NW} \widehat{\Sigma}_{EW}$ may not be a positive semidefinite matrix.
- 3. (32 points) The table below contains the results of regressing Taiwan's suicide rate on the lagged unemployment rate u_{t-1} and the lagged GDP growth rate g_{t-1} . The numbers in the parentheses are the t ratios based on the standard OLS standard errors, as in p. 56 of the first slide file. The sample size is T = 30.

const	u_{t-1}	g_{t-1}	\bar{R}^2	${\rm Reg}\ F$
4.512	2.501	0.015	0.65	27.99**
(2.09^*)	(5.73^{**})	(0.08)		

- (a) Find \mathbb{R}^2 , the centered coefficient of determination.
- (b) Are the t ratios in the table above reliable? Why or why not?
- (c) You are also given below an Eicker-White covariance matrix estimate (left) and a Newey-West estimate (right):

ſ	5.124	-1.060	-0.357		6.954	-1.552	-0.361]
	-1.060	0.259	0.063	;	-1.552	0.388	0.073	.
l	-0.357	0.063	0.031		-0.361	0.073	0.027	

Choose a covariance matrix estimate and compute t ratios accordingly; explain your choice.

- (d) For the null hypothesis that the sum of the coefficients for u_{t-1} and g_{t-1} is 2, please compute your test statistic explicitly and discuss the limiting distribution.
- 4. (14 points) Suppose now you regress Taiwan's suicide rate s_t on a constant term, the unemployment rate u_t and the GDP growth rate g_t . State two possible reasons that your estimates may be inconsistent and explain why they are so.
- 5. (18 points) Let g denote Taiwan's annual GDP growth rate with observations g_t . Suppose you calculate the sample average of g_t over the years 1980–2010 as $\bar{g} = 5.94\%$ and would like to test the null hypothesis $\mathbb{IE}(g_t) = 5\%$. How would you test this hypothesis? Please be specific about your test statistic and its limiting distribution. Explain clearly how your test can be implemented and why it works.