
Quasi Maximum Likelihood Theory

CHUNG-MING KUAN

Department of Finance & CRETA

December 20, 2010

C.-M. Kuan (National Taiwan Univ.) Quasi Maximum Likelihood Theory December 20, 2010 1 / 119



Lecture Outline

1 Kullback-Leibler Information Criterion

2 Asymptotic Properties of the QMLE

Asymptotic Normality

Information Matrix Equality

3 Large Sample Tests: Nested Models

Wald Test

LM (Score) Test

Likelihood Ratio Test

4 Large Sample Tests: Non-Nested Models

Wald Encompassing Test

Score Encompassing Test

Pseudo-True Score Encompassing Test

C.-M. Kuan (National Taiwan Univ.) Quasi Maximum Likelihood Theory December 20, 2010 2 / 119



Lecture Outline (cont’d)

5 Example I: Discrete Choice Models

Binary Choice Models

Multinomial Models

Ordered Multinomial Models

6 Example II: Limited Dependent Variable Models

Truncated Regression Models

Censored Regression Models

Sample Selection Models

7 Example III: Time Series Models

C.-M. Kuan (National Taiwan Univ.) Quasi Maximum Likelihood Theory December 20, 2010 3 / 119



Quasi-Maximum Likelihood (QML) Theory

Drawbacks of the least-squares method:

It leaves no room for modeling other conditional moments, such as

conditional variance, of the dependent variable.

It fails to accommodate certain characteristics of the dependent

variable, such as binary response and data truncation.

The quasi-maximum likelihood (QML) method:

Specifying a likelihood function that admits specifications of different

conditional moments and/or distribution characteristics.

Model misspecification is allowed, cf. conventional ML method.
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Kullback-Leibler Information Criterion (KLIC)

Given IP(A) = p, the message that A will surely occur would be more

(less) valuable or more (less) surprising when p is small (large).

The information content of the message above ought to be a

decreasing function of p. An information function is

ι(p) = log(1/p),

which decreases from positive infinity (p ≈ 0) to zero (p = 1).

Clearly, ι(1− p) 6= ι(p). The expected information is

I = p ι(p) + (1− p) ι(1− p) = p log
(1

p

)
+ (1− p) log

( 1

1− p

)
,

which is also known as the entropy of the event A.
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The information that IP(A) changes from p to q would be useful

when p and q are very different. The information content is

ι(p)− ι(q) = log(q/p),

which is positive (negative) when q > p (q < p).

Given n mutually exclusive events A1, . . . ,An, each with an

information value log(qi/pi ), the expected information value is

I =
n∑

i=1

qi log
(qi
pi

)
.

Kullback-Leibler Information Criterion (KLIC) of g relative to f is

II(g : f ) =

∫
R

log
(g(ζ)

f (ζ)

)
g(ζ) dζ,

where g is the density function of z and f is another density function.
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Theorem 9.1

II(g : f ) ≥ 0; the equality holds if, and only if, g = f almost everywhere.

Proof: As log(1 + x) < x for all x > −1, we have

log
(g
f

)
= − log

(
1 +

f − g

g

)
> 1− f

g
.

It follows that∫
log
(g(ζ)

f (ζ)

)
g(ζ) dζ >

∫ (
1− f (ζ)

g(ζ)

)
g(ζ) dζ = 0.

Remark: The KLIC measures the “closeness” between f and g , but is not

a metric because it is not reflexive in general, i.e., II(g : f ) 6= II(f :g), and

does not obey the triangle inequality.
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Let zt = (yt w′t)
′ be ν × 1 and zt = {z1, z2, . . . , zt}.

Given a sample of T observations, specifying a complete probability

model for zT may be a formidable task in practice.

It is practically more convenient to focus on the conditional density

gt(yt | xt), where xt include some elements of wt and zt−1. We thus

specify a quasi-likelihood function ft(yt | xt ;θ) with θ ∈ Θ ⊆ Rk .

he KLIC of gt relative to ft is

II(gt : ft ;θ) =

∫
R

log

(
gt(yt | xt)
ft(yt | xt ;θ)

)
gt(yt | xt) dyt .
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For a sample of T obs, the average of T individual KLICs is:

ĪIT ({gt : ft};θ) :=
1

T

T∑
t=1

II(gt : ft ;θ)

=
1

T

T∑
t=1

(
IE[log gt(yt | xt)]− IE[log ft(yt | xt ;θ)]

)
.

Minimizing ĪIT ({gt : ft};θ) is equivalent to maximizing

L̄T (θ) =
1

T

T∑
t=1

IE[log ft(yt | xt ;θ)];

The maximizer of L̄T (θ), θ∗, is the minimizer of the average KLIC.
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If there exists a θo ∈ Θ such that ft(yt | xt ;θo) = gt(yt | xt) for all t,

we say that {ft} is correctly specified for {yt | xt}. In this case,

II(gt : ft ;θo) = 0, so that ĪIT ({gt : ft};θ) is minimized at θ∗ = θo .

Maximizing the sample counterpart of L̄T (θ):

LT (yT , xT ;θ) :=
1

T

T∑
t=1

log ft(yt | xt ;θ),

the average of the individual quasi-log-likelihood functions, the

resulting solution, θ̃T , is known as the quasi-maximum likelihood

estimator (QMLE) of θ. When {ft} is specified correctly for {yt | xt},
the QMLE is the standard MLE.
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Concentrating on certain conditional attribute of yt , we have, for

example, yt | xt ∼ N
(
µt(xt ;β), σ2

)
, or more generally,

yt | xt ∼ N
(
µt(xt ;β), h(xt ;α)

)
.

Suppose yt | xt ∼ N
(
µt(xt ;β), σ2

)
and let θ = (β′ σ2)′. The

maximizer of T−1
∑T

t=1 log ft(yt | xt ;θ) also solves

min
β

1

T

T∑
t=1

[yt − µt(xt ;β)]′ [yt − µt(xt ;β)] .

That is, the NLS estimator is a QMLE under the specification of

conditional normality with conditional homoskedasticity.

Even when {µt} is correctly specified for the conditional mean, there

is no guarantee that the specification of σ2 is correct.
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Asymptotic Properties of the QMLE

The quasi-log-likelihood function is, in general, a nonlinear function in

θ. The QMLE θ̃T must be computed numerically using a nonlinear

optimization algorithm.

[ID-3] There exists a unique θ∗ that minimizes the KLIC.

Consistency: Suppose that LT (yT , xT ;θ) tends to L̄T (θ) in

probability, uniformly in θ ∈ Θ, i.e., LT (yT , xT ;θ) obeys a WULLN.

Then, it is natural to expect the QMLE θ̃T to converge in probability

to θ∗, the minimizer of the average KLIC, ĪIT ({gt : ft};θ).
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Asymptotic Normality

When θ∗ is in the interior of Θ, the mean-value expansion of

∇LT (yT , xT ; θ̃T ) about θ∗ is

∇LT (yT , xT ; θ̃T ) = ∇LT (yT , xT ;θ∗) +∇2LT (yT , xT ;θ†T )(θ̃T −θ∗),

where the left-hand side is zero because θ̃T must satisfy the first order

condition.

Let HT (θ) = IE[∇2LT (yT , xT ;θ)]. When ∇2LT (yT , xT ;θ) obeys a

WULLN,

∇2LT (yT , xT ;θ†T )−HT (θ∗)
IP−→ 0.
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When HT (θ∗) is nonsingular,

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T ∇LT (yT , xT ;θ∗) + oIP(1).

Let BT (θ) = var
(√

T∇LT (yT , xT ;θ)
)

be the information matrix. When

∇ log ft(yt | xt ;θ) obeys a CLT,

BT (θ∗)−1/2
√
T
(
∇LT (yT , xT ;θ∗)−IE[∇LT (yT , xT ;θ∗)]

) D−→ N (0, Ik).

Knowing IE[∇LT (yT , xT ;θ)] = ∇ IE[LT (yT , xT ;θ)] is zero at θ = θ∗, the

KLIC minimizer, we have

BT (θ∗)−1/2
√
T ∇LT (yT , xT ;θ∗)

D−→ N (0, Ik).
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This shows that
√
T (θ̃T − θ∗) is asymptotically equivalent to

−HT (θ∗)−1BT (θ∗)1/2
[
BT (θ∗)−1/2

√
T ∇LT (yT , xT ;θ∗)

]
,

which has an asymptotic normal distribution.

Theorem 9.2

Letting CT (θ∗) = HT (θ∗)−1BT (θ∗)HT (θ∗)−1,

CT (θ∗)−1/2
√
T (θ̃T − θ∗)

D−→ N (0, Ik).
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Information Matrix Equality

When the likelihood is specified correctly in a proper sense, the

information matrix equality holds:

HT (θo) + BT (θo) = 0.

In this case, CT (θo) simplifies to −HT (θo)−1 or BT (θo)−1.

For the specification of {yt |xt}, define the score functions:

st(yt , xt ;θ) = ∇ log ft(yt |xt ;θ) = ft(yt |xt ;θ)−1∇ft(yt |xt ;θ),

so that ∇ft(yt |xt ;θ) = st(yt , xt ;θ)ft(yt |xt ;θ).
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By permitting interchange of differentiation and integration,∫
R

st(yt , xt ;θ)ft(yt |xt ;θ) dyt = ∇
∫
R
ft(yt |xt ;θ) dyt = 0.

If {ft} is correctly specified for {yt |xt}, IE[st(yt , xt ;θo)|xt ] = 0, where the

conditional expectation is taken with respect to gt(yt |xt) = ft(yt |xt ;θo).

Thus, mean score is zero: IE[st(yt , xt ;θo)] = 0.

As ∇ft = st ft , we have ∇2ft = (∇st)ft + (sts
′
t)ft , so that∫

R
[∇st(yt , xt ;θ) + st(yt , xt ;θ)st(yt , xt ;θ)′] ft(yt |xt ;θ) dyt

= ∇2

∫
R
ft(yt |xt ;θ) dyt

= 0.
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We have shown

IE[∇st(yt , xt ;θo)|xt ] + IE[st(yt , xt ;θo)st(yt , xt ;θo)′|xt ] = 0.

It follows that

1

T

T∑
t=1

IE[∇st(yt , xt ;θo)] +
1

T

T∑
t=1

IE[st(yt , xt ;θo)st(yt , xt ;θo)′]

= HT (θo) +
1

T

T∑
t=1

IE[st(yt , xt ;θo)st(yt , xt ;θo)′]

= 0.

i.e., the expected Hessian matrix is negative of the average of individual

information matrices, which need not be the information matrix BT (θo).
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By definition, the information matrix is

BT (θo) =
1

T
IE

[(
T∑
t=1

st(yt , xt ;θo)

)(
T∑
t=1

st(yt , xt ;θo)′

)]

=
1

T

T∑
t=1

IE[st(yt , xt ;θo)st(yt , xt ;θo)′]

+
1

T

T−1∑
τ=1

T∑
t=τ+1

IE[st−τ (yt−τ , xt−τ ;θo)st(yt , xt ;θo)′]

+
1

T

T−1∑
τ=1

T∑
t=τ+1

IE[st(yt , xt ;θo)st+τ (yt+τ , xt+τ ;θo)′].

That is, the information matrix involves the variances and autocovariances

of individual score functions.
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A specification of {yt |xt} is said to have dynamic misspecification if it is

not correctly specified for {yt |wt , z
t−1}; that is, there does not exist any

θo such that ft(yt |xt ;θo) = gt(yt |wt , z
t−1).

When ft(yt |xt ;θo) = gt(yt |wt , z
t−1),

IE[st(yt , xt ;θo)|xt ] = IE[st(yt , xt ;θo)|wt , z
t−1] = 0,

and by the law of iterated expectations,

IE
[
st(yt , xt ;θo)st+τ (yt+τ , xt+τ ;θo)′

]
= IE

[
st(yt , xt ;θo) IE[st+τ (yt+τ , xt+τ ;θo)′|wt+τ , z

t+τ−1]
]

= 0,

for τ ≥ 1. In this case,

BT (θo) =
1

T

T∑
t=1

IE
[
st(yt , xt ;θo)st(yt , xt ;θo)′

]
.
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Theorem 9.3

Suppose that there exists a θo such that ft(yt |xt ;θo) = gt(yt |xt) and

there is no dynamic misspecification. Then,

HT (θo) + BT (θo) = 0,

where HT (θo) = T−1
∑T

t=1 IE[∇st(yt , xt ;θo)] and

BT (θo) =
1

T

T∑
t=1

IE[st(yt , xt ;θo)st(yt , xt ;θo)′].

When Theorem 9.3 holds, BT (θo)1/2
√
T (θ̃T − θo)

D−→ N (0, Ik). That is,

the QMLE is asymptotically efficient because it achieves the Cramér-Rao

lower bound asymptotically.
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Example: Assume: yt |xt ∼ N (x′tβ, σ
2) for all t, so that

LT (yT , xT ;θ) = −1

2
log(2π)− 1

2
log(σ2)− 1

T

T∑
t=1

(yt − x′tβ)2

2σ2
.

Straightforward calculation yields

∇LT (yT , xT ;θ) =
1

T

T∑
t=1

 xt(yt−x′tβ)
σ2

− 1
2σ2 + (yt−x′tβ)2

2(σ2)2

 ,
∇2LT (yT , xT ;θ) =

1

T

T∑
t=1

 − xtx′t
σ2 −xt(yt−x′tβ)

(σ2)2

− (yt−x′tβ)x′t
(σ2)2

1
2(σ2)2 − (yt−x′tβ)2

(σ2)3

 .
solving ∇LT (yT , xT ;θ) = 0 we obtain the QMLEs for β and σ2.
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If the specification above is correct for {yt |xt}, there exists θo = (β′o σ
2
o)′

such that yt |xt ∼ N (x′tβo , σ
2
o). Taking expectation with respect to the

true distribution,

IE[xt(yt − x′tβ)] = IE[xt(IE(yt |xt)− x′tβ)] = IE(xtx
′
t)(βo − β),

which is zero when evaluated at β = βo . Similarly,

IE[(yt − x′tβ)2] = IE[(yt − x′tβo + x′tβo − x′tβ)2]

= IE[(yt − x′tβo)2] + IE[(x′tβo − x′tβ)2]

= σ2
o + IE[(x′tβo − x′tβ)2],

where the second term on the right-hand side is zero if it is evaluated at

β = βo .
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The results above show that

HT (θ) = IE[∇2LT (θ)]

=
1

T

T∑
t=1

 − IE(xtx′t)
σ2 − IE(xtx′t)(βo−β)

(σ2)2

− (βo−β)′ IE(xtx′t)
(σ2)2

1
2(σ2)2 − σ2

o+IE[(x′tβo−x′tβ)2]
(σ2)3

 ,
and

HT (θo) =
1

T

T∑
t=1

 − IE(xtx′t)
σ2
o

0

0′ − 1
2(σ2

o)2

 .
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Without dynamic misspecification, the information matrix BT (θ) is

1

T

T∑
t=1

IE

 (yt−x′tβ)2xtx′t
(σ2)2 −xt(yt−x′tβ)

2(σ2)2 + xt(yt−x′tβ)3

2(σ2)3

− (yt−x′tβ)x′t
2(σ2)2 + (yt−x′tβ)3x′t

2(σ2)3
1

4(σ2)2 − (yt−x′tβ)2

2(σ2)3 + (yt−x′tβ)4

4(σ2)4

 .
Given conditional normality, its conditional third and fourth central

moments are zero and 3(σ2
o)2, respectively. Then,

IE[(yt − x′tβ)3] = 3σ2
o IE[(x′tβo − x′tβ)] + IE[(x′tβo − x′tβ)3],

which is zero when evaluated at β = βo . Similarly,

IE[(yt − x′tβ)4] = 3(σ2
o)2 + 6σ2

o IE[(x′tβo − x′tβ)2] + IE[(x′tβo − x′tβ)4],

which is 3(σ2
o)2 when evaluated at β = βo .
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It is now easily seen that the information matrix equality holds because

BT (θo) =
1

T

T∑
t=1

 IE(xtx′t)
σ2
o

0

0′ 1
2(σ2

o)2

 .
A typical consistent estimator of HT (θo) is

H̃T =

 −∑T
t=1 xtx′t
T σ̃2

T
0

0′ − 1
2(σ̃2

T )2

 .
When the information matrix equality holds, a consistent estimator of

CT (θo) is −H̃
−1

T .
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Example: The specification is yt |xt ∼ N (x′tβ, σ
2), but the true conditional

behavior is yt |xt ∼ N
(
x′tβo , h(xt ,αo)

)
. That is, our specification is

correct only for the conditional mean. Due to misspecification, the KLIC

minimizer is θ∗ = (β′o (σ∗)2)′. Then,

HT (θ∗) =
1

T

T∑
t=1

 − IE(xtx′t)
(σ∗)2 0

0′ 1
2(σ∗)4 − IE[h(xt ,αo)]

(σ∗)6

 ,
and

BT (θ∗) =
1

T

T∑
t=1

 IE[h(xt ,αo)xtx′t ]
(σ∗)4 0

0′ 1
4(σ∗)4 − IE[h(xt ,αo)]

2(σ∗)6 + 3 IE[h(xt ,αo)2]
4(σ∗)8

 .
The information matrix equality does not hold here, despite that the

conditional mean function is specified correctly.
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The upper-left block of H̃T is −
∑T

t=1 xtx
′
t/(T σ̃2

T ), which remains a

consistent estimator of the corresponding block in HT (θ∗). The

information matrix BT (θ∗) can be consistently estimated by a

block-diagonal matrix with the upper-left block:∑T
t=1 ê

2
t xtx

′
t

T (σ̃2
T )2

.

The upper-left block of C̃T = H̃
−1

T B̃T H̃
−1

T is thus(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

ê2
t xtx

′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1

.

This is precisely the the Eicker-White estimator.
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Wald Test

Consider the null hypothesis Rθ∗ = r, where R is q × k matrix with full

row rank. The Wald test checks if Rθ̃T is sufficiently “close” to r.

By the asymptotic normality result:

CT (θ∗)−1/2
√
T (θ̃T − θ∗)

D−→ N (0, Ik),

we have under the null hypothesis that

[RCT (θ∗)R′]−1/2
√
T (Rθ̃T − r)

D−→ N (0, Iq).

This result remains valid when CT (θ∗) is replaced by a consistent

estimator: C̃T = H̃
−1

T B̃T H̃
−1

T . The Wald test is

WT = T (Rθ̃T − r)′(RC̃TR′)−1(Rθ̃T − r)
D−→ χ2(q).
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Example: Specification:yt |xt ∼ N (x′tβ, σ
2). Writing θ = (σ2 β′)′ and

β = (b′1 b′2)′, where b1 is (k − s)× 1, and b2 is s × 1. We are interested in

the hypothesis b∗2 = Rθ∗ = 0, where R = [0 R1] and R1 = [0 Is ] is s × k .

With β̃2,T = Rθ̃T , the Wald test is

WT = T β̃
′
2,T (RC̃TR′)−1β̃2,T .

When the information matrix equality holds, C̃T = −H̃
−1

T so that

RC̃TR′ = −RH̃
−1

T R′ = σ̃2
TR1(X′X/T )−1R′1.

The Wald test becomes

WT = T β̃
′
2,T [R1(X′X/T )−1R′1]−1β̃2,T/σ̃

2
T

D−→ χ2(s).
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LM (Score) Test

Maximizing LT (θ) subject to the constraint Rθ = r yields the Lagrangian:

LT (θ) + θ′R′λ,

where λ is the vector of Lagrange multipliers. The constrained QMLEs are

θ̈T and λ̈T ; we want to check if λ̈T is sufficiently “close” to zero.

First note the saddle-point condition: ∇LT (θ̈T ) + R′λ̈T = 0. The

mean-value expansion of ∇LT (θ̈T ) about θ∗ yields

∇LT (θ∗) +∇2LT (θ†T )(θ̈T − θ∗) + R′λ̈T = 0,

where θ†T is the mean value between θ̈T and θ∗.
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Recall from the discussion of the Wald test that

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T∇LT (θ∗) + oIP(1),

we obtain

0 = HT (θ∗)−1
√
T∇LT (θ∗)−HT (θ∗)−1∇2LT (θ†T )

√
T (θ̈T − θ∗)

−HT (θ∗)−1
√
TR′λ̈T

=
√
T (θ̃T − θ∗)−

√
T (θ̈T − θ∗)−HT (θ∗)−1R′

√
T λ̈T + oIP(1).

Pre-multiplying both sides by R and noting that R(θ̈T − θ∗) = 0, we have

√
T λ̈T = [RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗) + oIP(1).
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For ΛT (θ∗) = [RHT (θ∗)−1R′]−1RCT (θ∗)R′[RHT (θ∗)−1R′]−1, the

normalized Lagrangian multiplier is

ΛT (θ∗)−1/2
√
T λ̈T = ΛT (θ∗)−1/2[RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗)

D−→ N (0, Iq).

It follows that

Λ̈
−1/2
T

√
T λ̈T

D−→ N (0, Iq).

where Λ̈T = (RḦ
−1
T R′)−1RC̈TR′(RḦ

−1
T R′)−1, and ḦT and C̈T are

consistent estimators based on the constrained QMLE θ̈T . The LM test is

LMT = T λ̈
′
T Λ̈
−1
T λ̈T

D−→ χ2(q).
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In the light of the saddle-point condition: ∇LT (θ̈T ) + R′λ̈T = 0,

LMT = T λ̈
′
TRḦ

−1
T R′(RC̈TR′)−1RḦ

−1
T R′λ̈T

= T [∇LT (θ̈T )]′Ḧ
−1
T R′(RC̈TR′)−1RḦ

−1
T [∇LT (θ̈T )],

which mainly depends on the score function ∇LT evaluated at θ̈T .

When the information matrix equality holds,

LMT = −T λ̈′TRḦ
−1
T R′λ̈T

= −T [∇LT (θ̈T )]′Ḧ
−1
T [∇LT (θ̈T )].

The LM test is also known as the score test in the statistics literature.
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Example: Specification: yt |xt ∼ N (x′tβ, σ
2). Let θ = (σ2 β′)′ and

β = (b′1 b′2)′, where b1 is (k − s)× 1, and b2 is s × 1. The null hypothesis

is b∗2 = Rθ∗ = 0, where R = [0 R1] is s × (k + 1) and R1 = [0 Is ] is s × k .

From the saddle-point condition, ∇LT (θ̈T ) = −R′λ̈T , and hence

∇LT (θ̈T ) =


∇σ2LT (θ̈T )

∇b1
LT (θ̈T )

∇b2
LT (θ̈T )

 =


0

0

−λ̈T

 .
Thus, the LM test is mainly based on:

∇b2
LT (θ̈T ) =

1

T σ̈2
T

T∑
t=1

x2t ε̈t = X ′2ε̈/(T σ̈2
T ),

where σ̈2
T = ε̈′ε̈/T , with ε̈ the vector of constrained residuals.
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The LM test statistic now reads:

T


0

0

X ′2ε̈/(T σ̈2
T )


′

Ḧ
−1
T R′(RC̈TR′)−1RḦ

−1
T


0

0

X ′2ε̈/(T σ̈2
T )

 ,
which converges in distribution to χ2(s) under the null.

When the information matrix equality holds,

LMT = −T [∇LT (θ̈T )]′Ḧ
−1
T [∇LT (θ̈T )]

= T [0′ ε̈′X2/T ](X′X/T )−1[0′ ε̈′X2/T ]′/σ̈2
T

= T [ε̈′X(X′X)−1X′ε̈/ε̈′ε̈] = TR2,

where R2 is from the auxiliary regression of ε̈t on x1t and x2t .
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Example (Breusch-Pagan Test):

Let h : R→ (0,∞) be a differentiable function. Consider the specification:

yt |xt , ζt ∼ N
(
x′tβ, h(ζ′tα)

)
,

where ζ′tα = α0 +
∑p

i=1 ζtiαi . Under this specification,

LT (yT , xT , ζT ;θ) = −1

2
log(2π)− 1

2T

T∑
t=1

log
(
h(ζ′tα)

)
− 1

T

T∑
t=1

(yt − x′tβ)2

2h(ζ′tα)
.

The null hypothesis is α1 = · · · = αp = 0 so that h(α0) = σ2
0, i.e.,

conditional homoskedasticity.
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For the LM test, the corresponding score vector is

∇αLT (yT , xT , ζT ;θ) =
1

T

T∑
t=1

[
h1(ζ′tα)ζt
2h(ζ′tα)

(
(yt − x′tβ)2

h(ζ′tα)
− 1

)]
,

where h1(η) = dh(η)/ dη. Under the null, h1(ζ′tα) = h1(α0) =: c.

The constrained specification is yt |xt , ζt ∼ N (x′tβ, σ
2), and the

constrained QMLEs are the OLS estimator β̂T and σ̈2
T =

∑T
t=1 ê

2
t /T .

The score vector evaluated at the constrained QMLEs is

∇αLT (yt , xt , ζt ; θ̈T ) =
c

T

T∑
t=1

[
ζt

2σ̈2
T

(
ê2
t

σ̈2
T

− 1

)]
.
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It can be shown that the (p + 1)× (p + 1) block of the Hessian matrix

corresponding to α is

1

T

T∑
t=1

[
−(yt − x′tβ)2

h3(ζ′tα)
+

1

2h2(ζ′tα)

]
[h1(ζ′α)]2ζtζ

′
t

+

[
(yt − x′tβ)2

2h2(ζ′tα)
− 1

2h(ζ′tα)

]
h2(ζ′α)ζtζ

′
t ,

where h2(η) = dh1(η)/ dη. Evaluating the expectation of this block at

θo = (β′o α0 0′)′ and noting that σ2
o = h(α0), we have

−
(

c2

2[(σ2
o)2

)(
1

T

T∑
t=1

IE(ζtζ
′
t)

)
.
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This block of the expected Hessian matrix can be consistently estimated by

−
(

c2

2(σ̈2
T )2

)(
1

T

T∑
t=1

(ζtζ
′
t)

)
.

Setting dt = ê2
t /σ̈

2
T − 1, the LM statistic under the information matrix

equality is

LMT =
1

2

(
T∑
t=1

dtζ
′
t

)(
T∑
t=1

ζtζ
′
t

)−1( T∑
t=1

ζtdt

)
D−→ χ2(p),

where the numerator is the (centered) regression sum of squares (RSS) of

regressing dt on ζt .
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Remarks:

In the Breusch-Pagan test, the function h does not show up in the

statistic. As such, this test is capable of testing general conditional

heteroskedasticity without specifying a functional form of h.

When ζt contains the squares and all cross-product terms of the

non-constant elements of xt : x2
it and xitxjt (let there be n of such

terms), the resulting Breusch-Pagan test is also the test of

heteroskedasticity of unknown form due to White (1980) and has the

limiting distribution χ2(n).

The Breusch-Pagan test is valid when the information matrix equality

holds. Thus, the Breusch-Pagan test is not robust to dynamic

misspecification, e.g., when the errors are serially correlated.
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Koenker (1981): As T−1
∑T

t=1 ê
4
t

IP−→ 3(σ2
o)2 under the null,

1

T

T∑
t=1

d2
t =

1

T

T∑
t=1

ê4
t

(σ̈2
T )2
− 2

T

T∑
t=1

ê2
t

σ̈2
T

+ 1
IP−→ 2.

Thus, the test below is asymptotically equivalent to the original

Breusch-Pagan test:

LMT = T

(
T∑
t=1

dtζ
′
t

)(
T∑
t=1

ζtζ
′
t

)−1( T∑
t=1

ζtdt

)/
T∑
t=1

d2
t ,

which can be computed as TR2, where R2 is obtained from regressing dt
on ζt . As

∑T
i=1 di = 0, the centered and non-centered R2 are equivalent.

Thus, the Breusch-Pagan test can be computed as TR2 from the

regression of ê2
t on ζt . (Why?)
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Example (Breusch-Godfrey Test):

Given the specification yt |xt ∼ N (x′tβ, σ
2), we are interested in testing if

yt − x′tβ are serially uncorrelated. For the AR(1) error:

yt − x′tβ = ρ(yt−1 − x′t−1β) + ut ,

with |ρ| < 1 and {ut} a white noise. The null hypothesis is ρ∗ = 0.

Consider a general specification that admits serial correlations:

yt |yt−1, xt , xt−1 ∼ N (x′tβ + ρ(yt−1 − x′t−1β), σ2
u).

Under the null, yt |xt ∼ N (x′tβ, σ
2), and the constrained QMLE of β is

the OLS estimator β̂T . Testing the null hypothesis amounts to testing

whether yt−1 − x′t−1β should be included in the mean specification.
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When the information matrix equality holds, the LM test can be computed

as TR2, where R2 is from the regression of êt = yt − x′tβ̂T on xt and

yt−1 − x′t−1β. Replacing β with its constrained estimator β̂T , we can also

obtain R2 from the regression of êt on xt and êt−1. This test has the

limiting χ2(1) distribution under the null.

The Breusch-Godfrey test can be extended straightforwardly to check if

the errors follow an AR(p) process. By regressing êt on xt and

êt−1, . . . , êt−p, the resulting TR2 is the LM test when the information

matrix equality holds and has a limiting χ2(p) distribution.

Remark: If there is neglected conditional heteroskedasticity, the

information matrix equality would fail, and the Breusch-Godfrey test no

longer has a limiting χ2 distribution.
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If the specification is yt − x′tβ = ut + αut−1, i.e., the errors follow an

MA(1) process, we can write

yt |xt , ut−1 ∼ N (x′tβ + αut−1, σ
2
u).

The null hypothesis is α∗ = 0. Again, the constrained specification is the

standard linear regression model yt = x′tβ, and the constrained QMLE of

β is still the OLS estimator β̂T .

The LM test of α∗ = 0 can be computed as TR2 with R2 obtained from

the regression of ût = yt − x′tβ̂T on xt and ût−1. This is identical to the

LM test for AR(1) errors. Similarly, the Breusch-Godfrey test for MA(p)

errors is also the same as that for AR(p) errors.
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Likelihood Ratio Test

The likelihood ratio (LR) test compares the log-likelihoods of the

constrained and unconstrained specifications:

LRT = −2T [LT (θ̈T )− LT (θ̃T )].

Recall from the discussion of the LM test:

√
T (θ̈T − θ∗) =

√
T (θ̃T − θ∗)−HT (θ∗)−1R′

√
T λ̈T + oIP(1),

and
√
T λ̈T = [RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗) + oIP(1), we have

√
T (θ̃T−θ̈T ) = HT (θ∗)−1R′[RHT (θ∗)−1R′]−1R

√
T (θ̃T−θ∗)+oIP(1).
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By Taylor expansion of LT (θ̈T ) about θ̃T , we have

LRT = −2T
[
LT (θ̈T )− LT (θ̃T )

]
= −2T∇LT (θ̃T )(θ̈T − θ̃T )

− T (θ̈T − θ̃T )′HT (θ̃T )(θ̈T − θ̃T ) + oIP(1)

= −T (θ̈T − θ̃T )′HT (θ∗)(θ̈T − θ̃T ) + oIP(1),

because ∇LT (θ̃T ) = 0. It follows that

LRT = −T (θ̃T − θ∗)′R′[RHT (θ∗)−1R′]−1R(θ̃T − θ∗) + oIP(1).

The first term on the RHS would have an asymptotic χ2(q) distribution

provided that the information matrix equality holds. (Why?)
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Remarks:

The 3 classical large sample tests check different aspects of the

likelihood function. The Wald test checks if θ̃T is close to θ∗; the LM

test checks if ∇LT (θ̈T ) is close to zero; the LR test checks if the

constrained and unconstrained log-likelihood values are close to each

other.

The Wald and LM tests are based on unconstrained and constrained

estimation results, respectively, but the LR test requires both.

The Wald and LM test can be made robust to misspecification by

employing a suitable consistent estimator of the asymptotic

covariance matrix. Yet, the LR test is valid only when the information

matrix equality holds.
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Testing Non-Nested Models

Consider testing non-nested specifications:

H0 : yt |xt , ξt ∼ f (yt |xt ;θ), θ ∈ Θ ⊆ Rp,

H1 : yt |xt , ξt ∼ ϕ(yt |ξt ;ψ), ψ ∈ Ψ ⊆ Rq,

where xt and ξt are two sets of variables. These specification are

non-nested because they can not be derived from each other by imposing

restrictions on the parameters.

The encompassing principle of Mizon (1984) and Mizon and

Richard (1986) asserts that, if the model under the null is true, it should

encompass the model under the alternative, such that a statistic of the

alternative model should be close to its pseudo-true value, the probability

limit evaluated under the null model.
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Wald Encompassing Test

An encompassing test for non-nested hypotheses is based on the difference

between a chosen statistic and the sample counterpart of its pseudo-true

value. When the chosen statistic is the QMLE of the alternative model,

the resulting test is the Wald encompassing test (WET).

Consider now the non-nested specifications of the conditional mean

function:

H0 : yt |xt , ξt ∼ N (x′tβ, σ
2), β ∈ B ⊆ Rk ,

H1 : yt |xt , ξt ∼ N (ξ′tδ, σ
2), δ ∈ D ⊆ Rr ,

where xt and ξt do not have elements in common. Let β̂T and δ̂T denote

the QMLEs of the parameters in the null and alternative models.
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Under the null: yt |xt , ξt ∼ N (x′tβo , σ
2
o), IE(ξtyt) = IE(ξtx

′
t)βo , and hence

δ̂T =

(
1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξtyt

)
IP−→M−1

ξξ Mξxβo ,

where

Mξξ = lim
T→∞

1

T

T∑
t=1

IE(ξtξ
′
t), Mξx = lim

T→∞

1

T

T∑
t=1

IE(ξtx
′
t).

Clearly, the pseudo-true parameter δ(βo) = M−1
ξξ Mξxβo would not be the

probability limit of δ̂T if x′tβ is an incorrect specification of the conditional

mean. Thus, whether δ̂T and the sample counterpart of δ(βo) is

sufficiently close to zero constitutes an evidence for or against the null

hypothesis.
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The WET is then based on:

δ̂T − δ̂(β̂T ) = δ̂T −

(
1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξtx
′
t

)
β̂T

=

(
1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξt(yt − x′tβ̂T )

)
,

which in effect checks if εt = yt − x′tβ and ξt are correlated. Letting

êt = yt − x′tβ̂T , we have

1√
T

T∑
t=1

ξt êt =
1√
T

T∑
t=1

ξtεt −

(
1

T

T∑
t=1

ξtx
′
t

)
√
T (β̂T − βo),

which is

1√
T

T∑
t=1

ξtεt −

(
1

T

T∑
t=1

ξtx
′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1(
1√
T

T∑
t=1

xtεt

)
.
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Setting ξ̂t = MξxM−1
xx xt , we can write

1√
T

T∑
t=1

ξt êt =
1√
T

T∑
t=1

(ξt − ξ̂t)εt + oIP(1).

Under the null hypothesis,

1√
T

T∑
t=1

ξt êt
D−→ N (0,Σo),

where

Σo = σ2
o

(
lim

T→∞

1

T

T∑
t=1

IE
[
(ξt − ξ̂t)(ξt − ξ̂t)′

])

= σ2
o

(
Mξξ −MξxM−1

xx Mxξ

)
.
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Consequently,

T 1/2[δ̂T − δ̂(β̂T )]
D−→ N

(
0,M−1

ξξ ΣoM−1
ξξ

)
,

and hence

T
[
δ̂T − δ̂(β̂T )

]′
MξξΣ

−1
o Mξξ

[
δ̂T − δ̂(β̂T )

] D−→ χ2(r).

A consistent estimator for Σo is

Σ̂T = σ̂2
T

[(
1

T

T∑
t=1

ξtξ
′
t

)

−

(
1

T

T∑
t=1

ξtx
′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtξ
′
t

) .
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The WET statistic reads

WET = T
[
δ̂T − δ̂(β̂T )

]′(
1

T

T∑
t=1

ξtξ
′
t

)
Σ̂
−1

T

(
1

T

T∑
t=1

ξtξ
′
t

)[
δ̂T − δ̂(β̂T )

]
D−→ χ2(r).

When xt and ξt have s (s < r) elements in common,
∑T

t=1 ξt êt have s

elements that are identically zero. Thus, rank(Σo) = r∗ ≤ r − s, and the

WET should be computed with Σ̂
−1

T replaced by Σ̂
−
T , the generalized

inverse Σ̂T .
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Score Encompassing Test

Under H1: yt |xt , ξt ∼ N (ξ′tδ, σ
2), the score function evaluated at the

pseudo-true parameter δ(βo) is (apart from a constant σ−2)

1

T

T∑
t=1

ξt [yt − ξ′tδ(βo)] =
1

T

T∑
t=1

ξt
[
yt − ξ′t

(
M−1
ξξ Mξxβo

)]
.

When the pseudo-true parameter is replaced by its estimator δ̂(β̂T ), the

score function becomes

1

T

T∑
t=1

ξt

yt − ξ′t
(

1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξtx
′
t

)
β̂T


=

1

T

T∑
t=1

ξt êt .
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The score encompassing test (SET) is based on

1√
T

T∑
t=1

ξt êt
D−→ N (0,Σo),

and the SET statistic is

1

T

(
T∑
t=1

êtξ
′
t

)
Σ̂
−1

T

(
T∑
t=1

ξt êt

)
D−→ χ2(r).

The WET and SET are based on the same ingredient and both

require evaluating the pseudo-true parameter.

The WET and SET are difficult to implement when the pseudo-true

parameter is not readily derived; this may happen when, e.g., the

QMLE does not have an analytic form. (Examples?)
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Pseudo-True Score Encompassing Test

Chen and Kuan (2002) propose the pseudo-true score encompassing (PSE)

test which is based on the pseudo-true value of the score function under

the alternative. Although it may be difficult to evaluate the pseudo-true

value of a QMLE when it does not have a closed form, it would be easier

to evaluate the pseudo-true score because the analytic from of the score

function is usually available.

The null and alternative hypotheses are:

H0 : yt |xt , ξt ∼ f (xt ;θ), θ ∈ Θ ⊆ Rp,

H1 : yt |xt , ξt ∼ ϕ(ξt ,ψ), ψ ∈ Ψ ⊆ Rq.
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Let sf ,t(θ) = ∇ log f (yt |xt ;θ), sϕ,t(ψ) = ∇ logϕ(yt |ξt ;ψ), and

∇Lf ,T (θ) =
1

T

T∑
t=1

sf ,t(θ), ∇Lϕ,T (ψ) =
1

T

T∑
t=1

sϕ,t(ψ).

The pseudo-true score function of ∇Lϕ,T (ψ) is

Jϕ(θ,ψ) := lim
T→∞

IEf (θ)

[
∇Lϕ,T (ψ)

]
.

As the pseudo-true parameter ψ(θo) is the KLIC minimizer when the null

hypothesis is specified correctly, we have

Jϕ(θo ,ψ(θo)) = 0.

Thus, whether Jϕ(θ̂T , ψ̂T ) is close to zero constitutes an evidence for or

against the null hypothesis.
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Following Wooldridge (1990), we can incorporate the null model into the

the score function and write

∇Lϕ,T (θ,ψ) =
1

T

T∑
t=1

d1,t(θ,ψ) +
1

T

T∑
t=1

d2,t(θ,ψ)ct(θ),

where IEf (θ)[ct(θ)|xt , ξt ] = 0. As such,

Jϕ(θ,ψ) = lim
T→∞

1

T

T∑
t=1

IEf (θ)

[
d1,t(θ,ψ)

]
,

and its sample counterpart is

Ĵϕ
(
θ̂T , ψ̂T

)
=

1

T

T∑
t=1

d1,t

(
θ̂T , ψ̂T

)
= − 1

T

T∑
t=1

d2,t

(
θ̂T , ψ̂T

)
ct
(
θ̂T
)
,

where the second equality follows because ∇Lϕ,T (ψ̂T ) = 0.
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For non-nested, linear specifications for the conditional mean, we can

incorporate the null model (yt = x′tβ + εt) into the score and obtain

∇δLϕ,T (θ,ψ) =
1

T

T∑
t=1

ξt(x′tβ − ξ′tδ) +
1

T

T∑
t=1

ξtεt

with d1,t(θ,ψ) = ξt(x′tβ − ξ′tδ), d2,t(θ,ψ) = ξt , and ct(θ) = εt . Then,

Ĵϕ
(
θ̂T , ψ̂T

)
=

1

T

T∑
t=1

ξt
(
x′tβ̂T − ξ′t δ̂T

)
= − 1

T

T∑
t=1

ξt êt ,

as in the SET discussed earlier.
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For nonlinear specifications, it can be seen that

Ĵϕ
(
θ̂T , ψ̂T

)
=

1

T

T∑
t=1

∇δµ
(
ξt , δ̂T

)[
m
(
xt , β̂T

)
− µ

(
ξt , δ̂T

)]
= − 1

T

T∑
t=1

∇δµ
(
ξt , δ̂T

)
êt ,

with êt = yt −m(xt , β̂T ) the nonlinear OLS residuals. Yet, it is not easy

to compute the SET here because evaluating the pseudo-true value of δ̂T
is a formidable task.
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The linear expansion of T 1/2Ĵϕ
(
θ̂T , ψ̂T

)
about (θo ,ψ(θo)) is

√
TĴϕ

(
θ̂T , ψ̂T

)
≈ − 1√

T

T∑
t=1

d2,t(θo ,ψ(θo))ct(θo)−Ao

√
T (θ̂T−θo),

where Ao = limT→∞ T−1
∑T

t=1 IEf (θo)

[
d2,t(θo ,ψ(θo))∇θct(θo)

]
. Note

that the other terms in the expansion that involve ct would vanish in the

limit because they have zero mean. Recall also that

√
T (θ̂T − θo) = −HT (θo)−1 1√

T

T∑
t=1

sf ,t(θo) + oIP(1),

where IEf (θo)[sf ,t(θo)|xt , ξt ] = 0.
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Collecting terms we have

√
TĴϕ

(
θ̂T , ψ̂T

)
= − 1√

T

T∑
t=1

bt(θo ,ψ(θo)) + oIP(1),

where bt(θo ,ψ(θo)) = d2,t(θo ,ψ(θo))ct(θo)− AoHT (θo)−1sf ,t(θo) and

IEf (θo)[bt(θo ,ψ(θo))|xt , ξt ] = 0.

By invoking a suitable CLT, T 1/2Ĵϕ
(
θ̂T , ψ̂T

)
has a limiting normal

distribution with the asymptotic covariance matrix:

Σo = lim
T→∞

1

T

T∑
t=1

IEf (θo)

[
bt(θo ,ψ(θo))bt(θo ,ψ(θo))′

]
,

which can be consistently estimated by

Σ̂T =
1

T

T∑
t=1

bt

(
θ̂T , ψ̂T

)
bt

(
θ̂T , ψ̂T

)′
.
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It follows that the PSE test is

PSET = TĴϕ
(
θ̂T , ψ̂T

)′
Σ̂
−
T Ĵϕ

(
θ̂T , ψ̂T

) D−→ χ2(k),

where k is the rank of Σ̂T and Σ̂
−
T is the generalized inverse of Σ̂T . The

PSE test can be understood as an extension of the conditional mean

encompassing test of Wooldridge (1990).
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Example: Consider non-nested specifications of conditional variance:

H0 : yt |xt , ξt ∼ N
(
0, h(xt ,α)

)
,

H1 : yt |xt , ξt ∼ N
(
0, κ(ξt ,γ)

)
.

When ht and κt are evaluated at the respective QMLEs α̃T and γ̃T , we

write ĥt and κ̂t . It can be verified that

sh,t(α) =
∇αht
2h2

t

(y2
t − ht),

sκ,t(γ) =
∇γκt
2κ2

t

(y2
t − κt) =

∇γκt
2κ2

t

(ht − κt)︸ ︷︷ ︸
d1,t

+
∇γκt
2κ2

t︸ ︷︷ ︸
d2,t

(y2
t − ht)︸ ︷︷ ︸

ct

,

where IEf (θ)(y2
t − ht |xt , ξt) = 0.
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The sample counterpart of the pseudo-true score function is thus

1

T

T∑
t=1

∇γ κ̂t
2κ̂2

t

(y2
t − ĥt).

Thus, the PSE test amounts to checking whether ∇γκt/(2κ2
t ) are

correlated with the “generalized” errors (y2
t − ht).
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Binary Choice Models

Consider the binary dependent variable:

yt =

{
1, with probability IP(yt = 1|xt),
0, with probability 1− IP(yt = 1|xt).

The density function of yt given xt is:

g(yt |xt) = IP(yt = 1|xt)yt [1− IP(yt = 1|xt)]1−yt .

Approximating IP(yt = 1|xt) by F (xt ;θ), the quasi-likelihood function is

f (yt |xt ;θ) = F (xt ;θ)yt [1− F (xt ;θ)]1−yt .

The QMLE θ̃T is obtained by maximizing

LT (θ) =
1

T

T∑
t=1

[
yt log F (xt ;θ) + (1− yt) log(1− F (xt ;θ))

]
.
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Probit model:

F (xt ;θ) = Φ(x′tθ) =

∫ x′tθ

−∞

1√
2π

e−v
2/2 dv ,

where Φ denotes the standard normal distribution function.

Logit model:

F (xt ;θ) = G (x′tθ) =
1

1 + exp(−x′tθ)
=

exp(x′tθ)

1 + exp(x′tθ)
,

where G is the logistic distribution function with mean zero and

variance π2/3. Note that the logistic distribution is more peaked

around its mean and has slightly thicker tails than the standard

normal distribution.
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Global Concavity

The log-likelihood function LT is globally concave provided that ∇2
θLT (θ)

is negative definite for θ ∈ Θ. By a 2nd-order Taylor expansion,

LT (θ) = LT (θ̃T ) +∇θLT (θ̃T )(θ − θ̃T )

+ (θ − θ̃T )′∇2
θLT (θ†)(θ − θ̃T )

= LT (θ̃T ) + (θ − θ̃T )′∇2
θLT (θ†)(θ − θ̃T ),

where θ† is between θ and θ̃T . Global concavity implies that LT (θ) must

be less than LT (θ̃T ) for any θ ∈ Θ. Thus, θ̃T must be a global maximizer.
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For the logit model, as G ′(u) = G (u)[1− G (u)], we have

∇θLT (θ) =
1

T

T∑
t=1

[
yt
G ′(x′tθ)

G (x′tθ)
− (1− yt)

G ′(x′tθ)

1− G (x′tθ)

]
xt

=
1

T

T∑
t=1

{
yt [1− G (x′tθ)]− (1− yt)G (x′tθ)

}
xt

=
1

T

T∑
t=1

[yt − G (x′tθ)]xt ,

from which we can solve for the QMLE θ̃T . Note that

∇2
θLT (θ) = − 1

T

T∑
t=1

G (x′tθ)[1− G (x′tθ)]xtx
′
t ,

which is negative definite, so that LT is globally concave in θ.
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For the probit model,

∇θLT (θ) =
1

T

T∑
t=1

[
yt
φ(x′tθ)

Φ(x′tθ)
− (1− yt)

φ(x′tθ)

1− Φ(x′tθ)

]
xt

=
1

T

T∑
t=1

yt − Φ(x′tθ)

Φ(x′tθ)[1− Φ(x′tθ)]
φ(x′tθ)xt ,

where φ is the standard normal density function. It can be verified that

∇2
θLT (θ) = − 1

T

T∑
t=1

[
yt
φ(x′tθ) + x′tθΦ(x′tθ)

Φ2(x′tθ)

+ (1− yt)
φ(x′tθ)− x′tθ[1− Φ(x′tθ)]

[1− Φ(x′tθ)]2

]
φ(x′tθ)xtx

′
t ,

which is also negative definite; see e.g., Amemiya (1985, pp. 273–274).
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As IE(yt | xt) = IP(yt = 1 | xt), we can write

yt = F (xt ;θ) + et .

Note that when F is correctly specified for the conditional mean, yt is

conditionally heteroskedastic with

var(yt |xt) = IP(yt = 1|xt)[1− IP(yt = 1|xt)].

Thus, the probit and logit models are also different nonlinear mean

specifications with conditional heteroskedasticity.

Note: The NLS estimator of θ is inefficient because the NLS objective

function ignores conditional heteroskedasticity in the data.
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Marginal response: For the probit model,

∂Φ(x′tθ)

∂xtj
= φ(x′tθ)θj ;

for the logit model,

∂G (x′tθ)

∂xtj
= G (x′tθ)[1− G (x′tθ)]θj .

These marginal effects all depend on xt .

It is typical to evaluate the marginal response based on a particular

value of xt , such as xt = 0 or xt = x̄, the sample average of xt .

When xt = 0, φ(0) ≈ 0.4 and G (0)[1− G (0)] = 0.25. This suggests

that the QMLE for the logit model is approximately 1.6 times the

QMLE for the probit model when xt are close to zero.
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Letting p = IP(y = 1 | x), p/(1− p) is the odds ratio: the probability

of y = 1 relative to the probability of y = 0.

For the logit model, the log-odds-ratio is

ln
( pt

1− pt

)
= ln(exp(x′tθ)) = x′tθ.

so that

∂ ln(pt/(1− pt))

∂xtj
= θj .

As the effect of a regressor on the log-odds-ratio, each coefficient in

the logit model is also understood as a semi-elasticity.
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Measure of Goodness of Fit

Digression: Given the objective function QT , let QT (c) denote the

value of QT when the model contains only a constant term, Q∗T the

largest possible value of QT (if exists), and QT (θ̂T ) the value of QT

for the fitted model. Then, R2 of relative gain is:

R2
RG =

QT (θ̂T )− QT (c)

Q∗T − QT (c)
= 1−

Q∗T − QT (θ̂T )

Q∗T − QT (c)
.

For binary choice models, QT = LT and the largest possible L∗T = 0

when IP(yt = 1|xt) = 1. The measure of McFadden (1974) is

R2
RG = 1− LT (θ̂T )

LT (ȳ)
= 1−

∑T
t=1

[
yt ln p̂t + (1− yt) ln(1− p̂t)

]
T
[
ȳ ln ȳ + (1− ȳ) ln(1− ȳ)

] ,

where p̂t = G (x′t θ̂T ) or p̂t = Φ(x′t θ̂T ).
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Latent Index Model

Assume that yt is determined by the latent index variable y∗t :

yt =

{
1, y∗t > 0,

0, y∗t ≤ 0,

where y∗t = x′tβ + et . Thus,

IP(yt = 1|xt) = IP(y∗t > 0|xt) = IP(et > −xtβ|xt),

which is also IP(et < xtβ|xt) provided that et is symmetric about zero.

The probit specification Φ or the logit specification G can be understood

as specifications of the conditional distribution of et .
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Multinomial Models

Consider J + 1 mutually exclusive choices that do not have a natural

ordering, e.g., employment status and commuting mode. The dependent

variable yt takes on J + 1 values such that

yt =


0, with probability IP(yt = 0|xt),
1, with probability IP(yt = 1|xt),
...

J, with probability IP(yt = J|xt).

Define the new binary variable dt,j for j = 0, 1, . . . , J as

dt,j =

{
1, if yt = j ,

0, otherwise,

note that
∑J

j=0 dt,j = 1.
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The density function of dt,0, . . . , dt,J given xt is then

g(dt,0, . . . , dt,J |xt) =
J∏

j=0

IP(yt = j |xt)dt,j .

Approximating IP(yt = j |xt) by Fj(xt ;θ) we obtain the quasi-log-likelihood

function:

LT (θ) =
1

T

T∑
t=1

J∑
j=0

dt,j lnFj(xt ;θ).

The first order condition is

∇θLT (θ) =
1

T

T∑
t=1

J∑
j=0

dt,j
1

Fj(xt ;θ)

[
∇θFj(xt ;θ)

]
= 0,

from which we can solve for the QMLE θ̃T .
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Multinomial Logit Model

Common specifications of the conditional probabilities are:

Fj(xt ;θ) = Gt,j =
exp(x′tθj)∑J

k=0 exp(x′tθk)
, j = 0, . . . , J,

where θ = (θ′0 θ
′
1 . . . θ′j)

′, and xt does not depend on choices. Note,

however, that the parameters are not identified because, for example,

exp[x′t(θ0 + γ)]

exp[x′t(θ0 + γ)] +
∑J

k=1 exp(x′tθk)

=
exp(x′tθ0)

exp(x′tθ0) +
∑J

k=1 exp[x′t(θk − γ)]
.
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For normalization, we set θ0 = 0, so that

F0(xt ;θ) = Gt,0 =
1

1 +
∑J

k=1 exp(x′tθk)
,

Fj(xt ;θ) = Gt,j =
exp(x′tθj)

1 +
∑J

k=1 exp(x′tθk)
, j = 1, . . . , J,

with θ = (θ′1 θ
′
2 . . . θ′j)

′. This leads to the multinomial logit model, and

the quasi-log-likelihood function is

LT (θ) =
1

T

T∑
t=1

J∑
j=1

dt,jx
′
tθj −

1

T

T∑
t=1

log

(
1 +

J∑
k=1

exp(x′tθk)

)
.
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It is easy to see that ∇θj
Gt,k = −Gt,kGt,jxt for k 6= j , and

∇θj
Gt,j = Gt,j

[
1− Gt,j

]
xt .

It follows that

∇θj
LT (θ) =

1

T

T∑
t=1

(dt,j − Gt,j)xt , j = 1, . . . , J.

The Hessian matrix contains:

∇θjθ
′
i
LT (θ) =

1

T

T∑
t=1

(Gt,jGt,i )xtx
′
t , i 6= j , i , j = 1, . . . , J,

∇θjθ
′
j
LT (θ) = − 1

T

T∑
t=1

Gt,j(1− Gt,j)xtx
′
t , j = 1, . . . , J.
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The marginal response of Gt,j to the change of xt are

∇xtGt,0 = −Gt,0

J∑
i=1

Gt,iθi ,

∇xtGt,j = Gt,j

(
θj −

J∑
i=1

Gt,iθi

)
, j = 1, . . . , J.

Thus, all coefficient vectors θi , i = 1, . . . , J, enter ∇xtGt,j . The log-odds

ratios (relative to the base choice j = 0) are:

ln(Gt,j/Gt,0) = x′t(θj − θ0) = x′tθj , j = 1, . . . , J,

as θ0 = 0 in Gt,0 by construction. Thus, each coefficient θj ,k is also

understood as the effect of xtk on the log-odds-ratio ln(Gt,j/Gt,0).
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Conditional Logit Model

In the conditional logit model, there are multiple choices with

choice-dependent or alternative-varying regressors. For example, in

choosing among several commuting modes, the regressors may include the

in-vehicle time and waiting time that vary with the vehicle.

Let xt = (x′t,0 x′t,1 . . . x′t,J)′. The specifications for the conditional

probabilities are

Gt,j =
exp(x′t,jθ)∑J

k=0 exp(x′t,kθ)
, j = 0, 1, . . . , J.

In contrast with the multinomial model, θ is common for all j , so that

there is no identification problem.
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The quasi-log-likelihood function is

LT (θ) =
1

T

T∑
t=1

J∑
j=0

dt,jx
′
t,jθ −

1

T

T∑
t=1

log

(
J∑

k=0

exp(x′t,kθ)

)
.

The gradient and Hessian matrix are

∇θLT (θ) =
1

T

T∑
t=1

J∑
j=0

(dt,j − Gt,j)xt,j ,

∇2
θLT (θ) = − 1

T

T∑
t=1

 J∑
j=0

Gt,jxt,jx
′
t,j −

 J∑
j=0

Gt,jxt,j

 J∑
j=0

Gt,jx
′
t,j


= − 1

T

T∑
t=1

J∑
j=0

Gt,j(xt,j − x̄t)(xt,j − x̄t)
′,

where x̄t =
∑J

j=0 Gt,jxt,j is the weighted average of xt,j .

C.-M. Kuan (National Taiwan Univ.) Quasi Maximum Likelihood Theory December 20, 2010 85 / 119



It can be shown that the Hessian matrix is negative definite so that the

quasi-log-likelihood function is globally concave.

Each choice probability Gt,j is affected not only by xt,j but also the

regressors for other choices, xt,i , because

∇xt,iGt,j = −Gt,jGt,iθ, i 6= j , i = 0, . . . , J,

∇xt,jGt,j = Gt,j(1− Gt,j)θ, j = 0, . . . , J.

Note that for positive θ, an increase in xt,j increases the probability of the

j th choice but decreases the probabilities of other choices.
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Random Utility Interpretation

McFadden (1974): Consider the random utility of the choice j :

Ut,j = Vt,j + εt,j , j = 0, 1, . . . , J.

The alternative i would be chosen if

IP(yt = i |xt) = IP(Ut,i > Ut,j , for all j 6= i |xt)

= IP(εt,j − εt,i ≤ Vt,j − Vt,i , for all j 6= i |xt).

Letting ε̃t,ji = εt,j − εt,i and Ṽt,ji = Vt,j − Vt,i . Then we have (for j = 0),

IP(yt = 1|xt) = IP(ε̃t,j0 ≤ −Ṽt,j0, j = 1, 2, . . . , J|xt)

=

∫ −Ṽt,10

∞
· · ·
∫ −Ṽt,J0

∞
f (ε̃t,10, . . . ε̃t,J0) d ε̃t,10 · · · d ε̃t,J0.
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This setup is consistent with the theory of decision making. Different

models are obtained by imposing different assumptions on the joint

distribution of εt,j .

Suppose that εt,j are independent random variables across j with the type

I extreme value distribution: exp[− exp(−εt,j)], and the density:

f (εt,j) = exp(−εt,j) exp[− exp(−εt,j)], j = 0, 1, . . . , J.

It can be shown that

IP(yt = j |xt) =
exp(Vt,j)∑J
i=0 exp(Vt,i )

.

We obtain the conditional logit model when Vt,j = x′t,jθ and multinomial

logit model when Vt,j = x′tθj .
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Remarks:

1 In the conditional logit model, the choices must be quite different

such that they are independent of each other. This is known as

independence of irrelevant alternatives (IIA) which is a restrictive

condition in practice.

2 The multinomial probit model is obtained by assuming that εt,j are

jointly normally distributed. This model permits correlations among

the choices, yet it requires numerical or simulation method to

evaluate the J-fold integral for choice probabilities.
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Nested Logit Models

McFadden (1978): Generalized extreme value (GEV) distribution with

F (ε0, ε1, . . . , εJ) = exp
[
−G
(
e−ε0 , e−ε1 , . . . , e−εJ

)]
,

where G is non-negative and homogeneous of degree one and satisfies

other conditions. With this distribution assumption, the choice

probabilities of the random utility model are

eVj
Gj

(
e−V0 , e−V1 , . . . , e−VJ

)
G
(
e−V0 , e−V1 , . . . , e−VJ

) , j = 0, 1, . . . , J,

where Gj denotes the derivative of G with respect to the j th argument. In

particular, when G
(
e−V0 , e−V1,, . . . , e−VJ

)
=
∑J

k=0 exp(−Vk), we obtain

the multinomial logit model.
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Consider the case that there are J groups of choices, in which the j th

group has 1, . . . ,Kj choices. The random utility is:

Ut,jk = Vt,jk + εt,jk , j = 1, . . . , J, k = 1, . . . ,Kj .

For example, one must first choose between taking public transportation

and driving and then select a vehicle in the chosen group. The nested logit

model postulates the GEV distribution for εt,jk :

exp
[
−G
(
e−ε11 , . . . , e−ε1K1 , . . . , e−εJ1 , . . . , e−εJKJ

)]
= exp

− J∑
j=1

 Kj∑
k=1

(
e−εjk

)1/rj

rj
 ,

where rj = [1− corr(εjk , εjm)]1/2. When the choices in the j th group are

uncorrelated, we have rj = 1 and hence the multinomial logit model.
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Define the binary variable dt,jk as

dt,jk =

{
1, if yt = jk,

0, otherwise,
j = 1, . . . , J, k = 1, . . . ,Kj .

A particular choice jk is chosen with the probability

pt,jk = IP(dt,jk = 1|xt) = IP(Ut,jk > Ut,mn ∀m, n|xt).

Let xt be the collection of zt,j and wt,jk and

Vt,jk = z′t,jα+ w′t,jkγ j , j = 1, . . . , J, k = 1, . . . ,Kj .

Thus, we have group-specific regressors and regressors that that depend

on both j and k .
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Let It,j = ln
(∑Kj

k=1 exp(w′t,jkγ j/rj)
)

denote the inclusive value, where rj
are known as scale parameters. We can write

pt,jk =
exp(z′t,jα+ rj It,j)∑J

m=1 exp(z′t,mα+ rmIt,m)︸ ︷︷ ︸
pt,j

×
exp(w′t,jkγ j/rj)∑Kj

n=1 exp(w′t,jnγ j/rj)︸ ︷︷ ︸
pt,k|j

;

details can be found in Cameron and Trivedi (2005, pp. 526–527). Note

that for a given j , pt,k|j is a conditional logit model with the parameter

γ j/rj .
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The approximating density is

f =
J∏

j=1

Kj∏
k=1

(
pt,j × pt,k|j

)dt,jk =
J∏

j=1

p
dt,jk
t,j

Kj∏
k=1

p
dt,jk
t,k|j

 ,

and the quasi-log-likelihood function is

LT =
1

T

T∑
t=1

J∑
j=1

dt,jk ln(pt,j) +
1

T

T∑
t=1

J∑
j=1

Kj∑
k=1

dt,jk ln(pt,k|j).

Maximizing this likelihood function yields the full information maximum

likelihood (FIML) estimator. There is also a sequential (limited

information maximum likelihood) estimator; we omit the details.
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Ordered Multinomial Models

Suppose that the categories of data have an ordering such that

yt =


0, y∗t ≤ c1

1, c1 < y∗t ≤ c2
...

J, cJ < y∗t .

where y∗t are latent variables. For example, language proficiency status

and education level have a natural ordering. Such models may be

estimated using multinomial logit models; yet taking into account this

structure yields simpler models.
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Setting y∗t = x′tθ + et , the conditional probabilities are:

IP(yt = j |xt) = IP(cj < y∗t < cj+1 | xt)

= IP(cj − x′tθ < et < cj+1 − x′tθ | xt)

= F (cj+1 − x′tθ)− F (cj − x′tθ), j = 0, 1, . . . , J,

where c0 = −∞, cJ+1 =∞, and F is the distribution of et . When F is

the logistic (standard normal) distribution function, it is the ordered logit

(probit) model. The quasi-log-likelihood function is

LT (θ) =
1

T

T∑
t=1

J∑
j=0

ln
(
F (cj+1 − x′tθ)− F (cj − x′tθ)

)
.

Pratt (1981) showed that the Hessian matrix is negative definite so that

the quasi-log-likelihood function is globally concave.
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The marginal response of the choice probabilities to the change of

regressors are

∇xt IP(yt = j |xt) =
[
f (cj − x′tθ)− f (cj+1 − x′tθ)

]
θ.

For the ordered probit model, these responses are
−φ(c1 − x′tθ)θ, j = 0[
φ(cj − x′tθ)− φ(cj+1 − x′tθ)

]
θ, j = 1, . . . , J − 1,

φ(cJ − x′tθ)θ, j = J.
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Truncated Regression Models

When a variable can only be observed within a limited range, it is known

as a limited dependent variable. The data are truncated if they are

completely lost outside a given range; for example, income data may be

truncated when they are below certain level.

When yt is truncated from below at c , i.e., yt > c , the conditional density

of truncated yt is

g̃(yt |yt > c , xt) = g(yt |xt)/ IP(yt > c |xt).

Similarly, the conditional density of yt truncated from above at c is

g̃(yt |yt < c , xt) = g(yt |xt)/ IP(yt < c |xt).

Our illustration is based on yt truncated from below.
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Approximating g(yt |xt) by

f (yt |xt ;β, σ2) =
1√

2πσ2
exp

(
−(yt − x′tβ)2

2σ2

)
=

1

σ
φ
(yt − x′tβ

σ

)
,

and setting ut = (yt − x′tβ)/σ, we have

IP(yt > c|xt) =
1

σ

∫ ∞
c

φ
(yt − x′tβ

σ

)
dyt =

∫ ∞
(c−x′tβ)/σ

φ(ut) dut

= 1− Φ
(c − x′tβ

σ

)
.

The truncated density function g̃(yt |yt > c , xt) is then approximated by

f (yt |yt > c , xt ;β, σ
2) =

φ[(yt − x′tβ)/σ]

σ
[
1− Φ

(
(c − x′tβ)/σ

)] .
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The quasi-log-likelihood function is

−1

2
[log(2π) + log(σ2)]− 1

2Tσ2

T∑
t=1

(yt − x′tβ)2

− 1

T

T∑
t=1

log

[
1− Φ

(c − x′tβ

σ

)]
.

Reparameterizing by α = β/σ and γ = σ−1, we have

LT (θ) = − log(2π)

2
+ log(γ)− 1

2T

T∑
t=1

(γyt − x′tα)2

− 1

T

T∑
t=1

log
[
1− Φ(γc − x′tα)

]
,

where θ = (α′ γ)′.
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The first-order condition is

∇θLT (θ) =

 1
T

∑T
t=1

[
(γyt − x′tα)− φ(γc−x′tα)

1−Φ(γc−x′tα)

]
xt

1
γ −

1
T

∑T
t=1

[
(γyt − x′tα)yt −

φ(γc−x′tα)
1−Φ(γc−x′tα)c

]
 = 0,

from which we can solve for the QMLE of θ. It can also be verified that

LT (θ) is globally concave in θ.

When f (yt |yt > c, xt ;θo) is correctly specified, the conditional mean of

truncated yt is

IE(yt |yt > c , xt) =

∫ ∞
c

yt f (yt |yt > c , xt ;θo) dyt

=

∫ ∞
c

yt

(
φ[(yt − x′tβo)/σo ]

σo
[
1− Φ

(
(c − x′tβo)/σo

)]) dyt .
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Letting ut,o = (yt − x′tβo)/σo and ct,o = (c − x′tβo)/σo , we have

IE(yt |yt > c , xt) =

∫ ∞
ct,o

(σout,o + x′tβo)
φ(ut,o)

[1− Φ(ct,o)]
dut,o

=
σo

1− Φ(ct,o)

∫ ∞
ct,o

ut,oφ(ut,o) dut,o + x′tβo

=
σo

1− Φ(ct,o)

∫ ∞
ct,o

−φ′(ut,o) dut,o + x′tβo

= σo
φ(ct,o)

1− Φ(ct,o)
+ x′tβo .

That is, even when yt has a linear conditional mean function, its truncated

mean function is necessarily nonlinear. The OLS estimator of regressing yt
on xt is inconsistent for βo . Although NLS estimation may be employed,

QML estimation is typically preferred in practice.
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Define the hazard function λ as λ(u) = φ(u)/[1− Φ(u)], which is also

known as the inverse Mill’s ratio. Then,

dλ(u)

du
= − φ(u)u

1− Φ(u)
+

(
φ(u)

1− Φ(u)

)2

= −λ(u)u + λ(u)2.

The truncated mean is IE(yt |yt > c , xt) = x′tβo + σoλ(ct,o), and it can be

shown that the truncated variance is

var(yt |yt > c , xt) = σ2
o

[
1 + λ(ct,o)ct,o − λ2(ct,o)

]
,

instead of σ2
o . Note that the marginal response of IE(yt |yt > c , xt) to a

change of xt is proportional to conditional variance:

βo

[
1 + λ(ct,o)ct,o − λ2(ct,o)

]
=
βo

σ2
o

var(yt |yt > c , xt).
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Consider now the case that the dependent variable yt is truncated from

above at c , i.e., yt < c . The truncated density function g̃(yt |yt < c , xt)

can be approximated by

f (yt |yt < c , xt ;β, σ
2) =

φ[(yt − x′tβ)/σ]

σΦ
(
(c − x′tβ)/σ

) .
The QMLE can be obtained by maximizing the resulting

quasi-log-likelihood function LT . The truncated conditional mean in this

case is

IE(yt |yt < c , xt) = x′tβo − σo
φ
(
(c − x′tβo)/σo

)
Φ
(
(c − x′tβo)/σo

) ,
with the inverse Mill’s ratio λ(u) = −φ(u)/Φ(u).
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Censored Regression Models

In many applications, a variable may be censored, rather than truncated.

For example, the price of a product is censored at the cheapest available

price. Consider

yt =

{
y∗t , y∗t > 0,

0, y∗t ≤ 0,

where y∗t = x′tβ + et is an index variable. It does not matter whether the

threshold value of y∗t is zero or a non-zero constant c .

Let g and g∗ denote the densities of yt and y∗t conditional on xt . When

y∗t > 0, g(yt |xt) = g∗(y∗t |xt), and when y∗t ≤ 0, censoring yields

IP(yt = 0|xt) =

∫ 0

−∞
g∗(y∗t |xt) dy∗t .
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The density g is a hybrid of g∗ and IP(yt = 0|xt). Define

dt =

{
1, if yt > 0,

0, if yt = 0,

Then,

g(yt |xt) = g∗(y∗t |xt)dt [IP(yt = 0|xt)]1−dt .

In the standard Tobit model (Tobin, 1958), g∗(y∗t |xt) is approximated by

f (y∗t |xt ;β, σ2) =
1√

2πσ2
exp

(
−(y∗t − x′tβ)2

2σ2

)
=

1

σ
φ
(y∗t − x′tβ

σ

)
,

and IP{yt = 0|xt} is approximated by

1

σ

∫ 0

−∞
φ((y∗t − x′tβ)/σ) dy∗t =

∫ −x′tβ/σ

−∞
φ(vt) dvt = 1− Φ

(x′tβ

σ

)
.
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The approximating desnity is

f (yt |xt ;β, σ2) =

(
1

σ
φ
(y∗t − x′tβ

σ

))dt (
1− Φ

(x′tβ

σ

))1−dt
.

The quasi-log-likelihood function is thus

− T1

2T
[log(2π) + log(σ2)] +

1

T

∑
{t:yt=0}

log(1− Φ(x′tβ/σ))

− 1

2T

∑
{t:yt>0}

[(yt − x′tβ)/σ]2,

where T1 is the number of t such that yt > 0.
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Letting α = β/σ and γ = σ−1, the QMLE of θ = (α′ γ)′ is obtained by

maximizing

LT (θ) =
1

T

∑
{t:yt=0}

log
(
1− Φ(x′tα)

)
+

T1

T
log γ

− 1

2T

∑
{t:yt>0}

(γyt − x′tα)2,

which is globally concave in α and γ. The first order condition is

∇θLT (θ) =
1

T

 −∑{t:yt=0}
φ(x′tα)

1−Φ(x′tα)xt +
∑
{t:yt>0}(γyt − x′tα)xt

T1
γ −

∑
{t:yt>0}(γyt − x′tα)yt .


= 0,

from which the QMLE can be computed.
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The conditional mean of censored yt is

IE(yt |xt) = IE(yt |yt > 0, xt) IP(yt > 0|xt)

+ IE(yt |yt = 0, xt) IP(yt = 0|xt)

= IE(y∗t |y∗t > 0, xt) IP(y∗t > 0|xt).

When f (y∗t |xt ;β, σ2) is correctly specified for g∗(y∗t |xt),

IP(y∗t > 0|xt) = IP

(
y∗t − x′tβo

σo
>
−x′tβo

σo

∣∣∣∣ xt) = Φ(x′tβo/σo).

This leads to the following conditional density:

g̃(y∗t |y∗t > 0, xt) =
g∗(y∗t |xt)

IP(y∗t > 0|xt)
=
φ[(y∗t − x′tβo)/σo ]

σo Φ(x′tβo/σo)
.
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Thus, given y∗t > 0,

IE(y∗t |y∗t > 0, xt) =

∫ ∞
0

y∗t g̃(y∗t |y∗t > 0, xt) dy∗t

= x′tβo + σo
φ(x′tβo/σo)

Φ(x′tβo/σo)
;

The conditional mean of censored yt is thus

IE(yt |xt) = IE(y∗t |y∗t > 0, xt) IP(y∗t > 0|xt)

= x′tβoΦ(x′tβo/σo) + σoφ(x′tβo/σo).

This shows that x′tβ can not be the correct specification of the conditional

mean of censored yt . Regressing yt on xt thus results in an inconsistent

estimator for βo .
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Consider the case that yt is censored from above:

yt =

{
y∗t , y∗t < 0,

0, y∗t ≥ 0.

When f (y∗t |xt ;β, σ2) is correctly specified for g∗(y∗t |xt),

IP(y∗t < 0|xt) = 1− Φ(x′tβo/σo), and

g̃(y∗t |y∗t < 0, xt) =
g∗(y∗t |xt)

IP(y∗t < 0|xt)
=

φ[(y∗t − x′tβo)/σo ]

σo [1− Φ(x′tβo/σo)]
.

Given y∗t < 0,

IE(y∗t |y∗t < 0, xt) = x′tβo − σo
φ(x′tβo/σo)

1− Φ(x′tβo/σo)
.
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The conditional mean of yt censored from above is

IE(yt |xt) = x′tβo [1− Φ(x′tβo/σo)]− σoφ(x′tβo/σo).

Remark: The results in Tobit model rely heavily on the distributional

assumptions. If the postulated normality is incorrect or even if

homoskedasticity does not hold, the QMLE also loses consistency.
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Sample Selection Models

In the study of how wages and individual characteristics affect working

hours, the data of working hours are only observed for those who select to

work. This is the problem of sample selection or incidental truncation.

Consider two variables y1 (indicator of working) and y2 (working hour):

y1,t =

{
1, y∗1,t > 0,

0, y∗1,t ≤ 0.

y2,t = y∗2,t , if y1,t = 1,

where y∗1,t = x′1,tβ + e1,t and y∗2,t = x′2,tγ + e2,t are unobserved index

variables. The selection problem arises because the former affects the

latter, and y2,t are incidentally truncated when y1,t = 0.
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In general, the likelihood function of yt contains 2 parts:[
P(y∗1,t ≤ 0|xt)

]1−y1,t
[
f (y2,t |y∗1,t > 0, xt) IP(y∗1,t > 0|xt)

]y1,t ;

see Amemiya (1985, pp. 385–387) for details.

Type 2 Tobit model: Under conditional normality,(
y∗1,t
y∗2,t

)
∼ N

((
x′1,tβo

x′2,tγo

)
,

[
σ2

1,o σ12,o

σ12,o σ2
2,o

])
.

We know

IE(y∗2,t |y∗1,t) = x′2,tγo + σ12,o(y∗1,t − x′1,tβo)/σ2
1,o ,

and var(y∗2,t |y∗1,t) = σ2
2,o − σ2

12,o/σ
2
1,o .
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Recall from truncated regression that

IE(y∗1,t |y∗1,t > c) = x′1,tβo + σ1,oφ(ct,o)/[1− Φ(ct,o)],

where ct,o = (c − x′1,tβo)/σ1,o . When the truncation parameter c = 0,

φ(ct,o) = φ(x′1,tβo/σ1,o) and 1−Φ(ct,o) = Φ(x′1,tβo/σ1,o). It follows that

IE(y∗1,t |y∗1,t > 0) = x′1,tβo + σ1,oλ

(
x′1,tβo

σ1,o

)
,

with λ(u) = φ(u)/Φ(u). Consequently,

IE(y2,t |y∗1,t > 0, xt) = x′2,tγo +
σ12,o

σ2
1,o

[
IE(y∗1,t |y∗1,t > 0, xt)− x′1,tβo

]
= x′2,tγo +

σ12,o

σ1,o

λ

(
x′1,tβo

σ1,o

)
.
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Again from the truncation regression result, we have

var(y∗1,t |y∗1,t > 0, xt) = σ2
1,o

[
1− λ

(
x′1,tβo

σ1,o

)
x′1,tβo

σ1,o

− λ
(

x′1,tβo

σ1,o

)2
]
.

Writing

y∗2,t = x′2,tγo + σ12,o(y∗1,t − x′1,tβo)/σ2
1,o + vt ,

where vt |y∗1,t ∼ N (0, σ2
2,o − σ2

12,o/σ
2
1,o). Then var(y2,t |y∗1,t > 0, xt) is

σ2
12,o

σ4
1,o

var(y∗1,t |y∗1,t > 0, xt) + var(vt |y∗1,t > 0, xt)

=
σ2

12,o

σ2
1,o

[
1− λ

(
x′1,tβo

σ1,o

)
x′1,tβo

σ1,o

− λ
(

x′1,tβo

σ1,o

)2
]

+

(
σ2

2,o −
σ2

12,o

σ2
1,o

)

= σ2
2,o −

σ2
12,o

σ2
1,o

[
λ

(
x′1,tβo

σ1,o

)
x′1,tβo

σ1,o

+ λ

(
x′1,tβo

σ1,o

)2
]
.
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Heckman’s Two-Step Estimator

We thus have a complex nonlinear specification:

y2,t = x′2,tγ +
σ12

σ1

λ

(
x′1,tβ

σ1

)
+ et ,

with conditional heteroskedasticity. Clearly, OLS regression of y2,t on xt is

inconsistent, unless σ12,o = 0. The sample-selection bias may be very

severe in finite samples.

Heckman’s two-step procedure yields consistent estimate:

1 Compute the QMLE of α = β/σ1 using the probit model of y1,t and

denote the estimator as α̃T .

2 Regress y2,t on x2,t and λ̃t , where λ̃t = λ(x′1,tα̃T ).
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The variance estimate can be computed as

σ̂2
2 =

1

T

T∑
t=1

[
ẽ2
t +

σ̂2
12

σ̂2
1

λ̃t
(
x′1,tα̃T + λ̃t

)]
,

where ẽt are the residuals of the regression in the 2nd step.

Remarks:

We can test whether sample selection is relevant by checking the

coefficient of λ̃t in the 2nd step is zero.

Both the OLS standard errors and heteroskedasticity-consistent

standard errors in the regression of the 2nd step are incorrect, due to

the presence of the parameter estimate α̃T in λ̃t . There are some

complicated ways to handle this problem (check your software);

bootstrap is an alternative.
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Time Series Models
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