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When Regressors are Stochasitc

Given y = Xβ + e, suppose that X is stochastic. Then, [A2](i) does not

hold because IE(y) can not be Xβo .

It would be difficult to evaluate IE(β̂T ) and var(β̂T ) because β̂T is a

complex function of the elements of y and X.

Assume IE(y | X) = Xβo .

IE(β̂T ) = IE
[
(X′X)−1X′ IE(y | X)

]
= βo .

If var(y | X) = σ2
oIT ,

var(β̂T ) = IE
[
(X′X)−1X′ var(y | X)X(X′X)−1

]
= σ2

o IE(X′X)−1,

which is not the same as σ2o(X′X)−1.

(X′X)−1X′y is not normally distributed even when y is.
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Q: Is the condition IE(y | X) = Xβo realistic?

Suppose that xt contains only one regressor yt−1. Then,

IE(yt | x1, . . . , xT ) = x′tβo implies

IE(yt | y1, . . . , yT−1) = βoyt−1,

which is yt with probability one. As such, the conditional variance of yt ,

var(yt | y1, . . . , yT−1) = IE{[yt−IE(yt | y1, . . . , yT−1)]2 | y1, . . . , yT−1},

must be zero, rather than a positive constant σ2o .

Note: When X is stochastic, a different framework is needed to evaluate

the properties of the OLs estimator.

C.-M. Kuan (National Taiwan Univ.) Asymptotic Least Squares Theory December 5, 2011 5 / 85



Notations

We observe (yt w′t)
′, where wt (m × 1) is the vector of all

“exogenous” variables.

Wt = {w1, . . . ,wt} and Yt = {y1, . . . , yt}. Then, {Yt−1,Wt}
generates a σ-algebra that is the information set up to time t.

Regressors xt (k × 1) are taken from the information set {Yt−1,Wt},
and the resulting linear specification is

yt = x′tβ + et , t = 1, 2, . . . ,T .

The OLS estimator of this specification is

β̂T = (X′X)−1X′y =

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
.
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Consistency

The OLS estimator β̂T is strongly (weakly) consistent for β∗ if β̂T
a.s.−→ β∗

(β̂T
IP−→ β∗) as T →∞. That is, β̂T will be eventually close to β∗ in a

proper probabilistic sense when “enough” information becomes available.

[B1] (i) {xtx′t} obeys a SLLN (WLLN) with the almost sure (prob.) limit

Mxx := limT→∞
1
T

∑T
t=1 IE(xtx

′
t),

which is nonsingular.

[B1] (ii) {xtyt} obeys a SLLN (WLLN) with the almost sure (prob.) limit

mxy := limT→∞
1
T

∑T
t=1 IE(xtyt).

[B2] There exists a βo such that yt = x′tβo + εt with IE(xtεt) = 0 for all t.
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By [B1] and Lemma 5.13, the OLS estimator of β̂T is(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtyt

)
→M−1xx mxy a.s. (in probability).

When [B2] holds, IE(xtyt) = IE(xtx
′
t)βo , so that mxy = Mxxβo , and

β∗ = βo .

Theorem 6.1

Consider the linear specification yt = x′tβ + et .

(i) When [B1] holds, β̂T is strongly (weakly) consistent for

β∗ = M−1xx mxy .

(ii) When [B1] and [B2] hold, βo = M−1xx mxy so that β̂T is strongly

(weakly) consistent for βo .
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Remarks:

Theorem 6.1 is about consistency (not unbiasedness), and what really

matters is whether the data are governed by some SLLN (WLLN).

Note that [B1] explicitly allows xt to be a random vector which may

contain some lagged dependent variables (yt−j , j ≥ 1) and other

random variables in the information set. Also, the random data may

exhibit dependence and heterogeneity, as long as such dependence

and heterogeneity do not affect the LLN in [B1].

Given [B2], x′tβ is the correct specification for the linear projection of

yt , and the OLS estimator converges to the parameter of interest βo .

A sufficient condition for [B2] is that there exists βo such that

IE(yt | Yt−1,Wt) = x′tβo . (Why?)
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Corollary 6.2

Suppose that (yt x′t)
′ are independent random vectors with bounded

(2 + δ) th moment for any δ > 0, such that Mxx and mxy defined in [B1]

exist. Then, the OLS estimator β̂T is strongly consistent for

β∗ = M−1xx mxy . If [B2] also holds, β̂T is strongly consistent for βo .

Proof: By the Cauchy-Schwartz inequality (Lemma 5.5), the i th element

of xtyt is such that

IE |xtiyt |1+δ ≤
[
IE |xti |2(1+δ)

]1/2[
IE |yt |2(1+δ)

]1/2 ≤ ∆,

for some ∆ > 0. Similarly, each element of xtx
′
t also has bounded

(1 + δ) th moment. Then, {xtx′t} and {xtyt} obey Markov’s SLLN by

Lemma 5.26 with the respective almost sure limits Mxx and mxy .
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Example: Given the specification: yt = αyt−1 + et , suppose that {y2t }
and {ytyt−1} obey a SLLN (WLLN). Then, the OLS estimator of α is such

that

α̂T →
limT→∞

1
T

∑T
t=1 IE(ytyt−1)

limT→∞
1
T

∑T
t=1 IE(y2t−1)

a.s. (in probability).

When {yt} indeed follows a stationary AR(1) process:

yt = αoyt−1 + ut , |αo | < 1,

where ut are i.i.d. with mean zero and variance σ2u, we have IE(yt) = 0,

var(yt) = σ2u/(1− α2
o) and cov(yt , yt−1) = αo var(yt). We have

α̂T →
cov(yt , yt−1)

var(yt)
= αo , a.s. (in probability).
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When x′tβo is not the linear projection, i.e., IE(xtεt) 6= 0,

IE(xtyt) = IE(xtx
′
t)βo + IE(xtεt).

Then, mxy = Mxxβo + mxε, where

mxε = lim
T→∞

1

T

T∑
t=1

IE(xtεt).

The limit of the OLS estimator now reads

β∗ = M−1xx mxy = βo + M−1xx mxε.
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Example: Given the specification: yt = x′tβ + et , suppose

IE(yt | Yt−1,Wt) = x′tβo + z′tγo ,

where zt are in the information set but distinct from xt . Writing

yt = x′tβo + z′tγo + εt = x′tβo + ut ,

we have IE(xtut) = IE(xtz
′
t)γo 6= 0. It follows that

β̂T →M−1xx mxy = βo + M−1xx Mxzγo ,

with Mxz := limT

∑T
t=1 IE(xtz

′
t)/T . The limit can not be βo unless xt is

orthogonal to zt , i.e., IE(xtz
′
t) = 0.
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Example: Given yt = αyt−1 + et , suppose that

yt = αoyt−1 + εt , |αo | < 1,

where εt = ut − πout−1 with |πo | < 1, and {ut} is a white noise with

mean zero and variance σ2u. Here, {yt} is a weakly stationary ARMA(1,1)

process. We know α̂T converges to cov(yt , yt−1)/ var(yt−1) almost surely

(in probability). Note, however, that εt−1 = ut−1 − πout−2 and

IE(yt−1εt) = IE[yt−1(ut − πout−1)] = −πoσ2u.

The limit of α̂T is then

cov(yt , yt−1)

var(yt−1)
=
αo var(yt−1) + cov(εt , yt−1)

var(yt−1)
= αo −

πoσ
2
u

var(yt−1)
.

The OLS estimator is inconsistent for αo unless πo = 0.
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Remark: Given the specification: yt = αyt−1 + x′tβ + et , suppose that

yt = αoyt−1 + x′tβo + εt ,

such that εt are serially correlated (e.g., AR(1) or MA(1)). The OLS

estimator is inconsistent because αoyt−1 + x′tβo is not the linear

projection, a consequence of the joint presence of a lagged dependent

variable (e.g., yt−1) and serially correlated disturbances (e.g., εt being

AR(1) or MA(1)).
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Asymptotic Normality

By asymptotic normality of β̂T we mean:

√
T (β̂T − βo)

D−→ N (0, Do),

where Do is a p.d. matrix. We may also write

D
−1/2
o

√
T (β̂T − βo)

D−→ N (0, Ik).

Given the specification yt = x′tβ + et and [B2], define

VT := var

(
1√
T

T∑
t=1

xtεt

)
.

[B3] {V−1/2o xtεt} obeys a CLT, where Vo = limT→∞VT is p.d.
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The normalized OLS estimator is

√
T (β̂T − βo) =

(
1

T

T∑
t=1

xtx
′
t

)−1(
1√
T

T∑
t=1

xtεt

)

=

(
1

T

T∑
t=1

xtx
′
t

)−1
V

1/2
o

[
V
−1/2
o

(
1√
T

T∑
t=1

xtεt

)]
D−→M−1xx V

1/2
o N (0, Ik).

Theorem 6.6

Given yt = x′tβ + et , suppose that [B1](i), [B2] and [B3] hold. Then,

√
T (β̂T − βo)

D−→ N (0, Do), Do = M−1xx VoM−1xx .
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Corrollary 6.7

Given yt = x′tβ + et , suppose that (yt x′t)
′ are independent random

vectors with bounded (4 + δ) th moment for any δ > 0 and that [B2]

holds. If Mxx defined in [B1] and Vo defined in [B3] exist,

√
T (β̂T − βo)

D−→ N (0, Do), Do = M−1xx VoM−1xx .

Proof: Let zt = λ′xtεt , where λ is such that λ′λ = 1. If {zt} obeys a

CLT, then {xtεt} obeys a multivariate CLT by the Cramér-Wold device.

Clearly, zt are independent r.v. with mean zero and

var(zt) = λ′[var(xtεt)]λ. By data independence,

VT = var

(
1√
T

T∑
t=1

xtεt

)
=

1

T

T∑
t=1

var(xtεt).
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Proof (Cont’d):

The average of var(zt) is then

1

T

T∑
t=1

var(zt) = λ′VTλ→ λVoλ.

By the Cauchy-Schwartz inequality,

IE |xtiyt |2+δ ≤
[
IE |xti |2(2+δ)

]1/2[
IE |yt |2(2+δ)

]1/2 ≤ ∆,

for some ∆ > 0. Similarly, xtixtj have bounded (2 + δ) th moment. It

follows that xtiεt and zt also have bounded (2 + δ) th moment by

Minkowski’s inequality. Then by Liapunov’s CLT,

1√
T (λ′Voλ)

T∑
t=1

zt
D−→ N (0, 1).
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Example: Consider yt = αyt−1 + et . Case 1: yt = αoyt−1 + ut with

|αo | < 1, where ut are i.i.d. with mean zero and variance σ2u. Note

var(yt−1ut) = IE(y2t−1) IE(u2t ) = σ4u/(1− α2
o),

and cov(yt−1ut , yt−1−jut−j) = 0 for all j > 0. A CLT ensures:√
1− α2

o

σ2u
√
T

T∑
t=1

yt−1ut
D−→ N (0, 1).

As
∑T

t=1 y
2
t−1/T converges to σ2u/(1− α2

o), we have√
1− α2

o

σ2u

σ2u
1− α2

o

√
T (α̂T−αo) =

1√
1− α2

o

√
T (α̂T−αo)

D−→ N (0, 1),

or equivalently,
√
T (α̂T − αo)

D−→ N (0, 1− α2
o).
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Example (cont’d): When {yt} is a random walk:

yt = yt−1 + ut .

We already know var(T−1/2
∑T

t=1 yt−1ut) diverges with T and hence

{yt−1ut} does not obey a CLT. Thus, there is no guarantee that

normalized α̂T is asymptotically normally distributed.
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Theorem 6.9

Given yt = x′tβ + et , suppose that [B1](i), [B2] and [B3] hold. Then,

D̂
−1/2
T

√
T (β̂T − βo)

D−→ N (0, Ik),

where D̂T = (
∑T

t=1 xtx
′
t/T )−1V̂T (

∑T
t=1 xtx

′
t/T )−1, with V̂T

IP−→ Vo .

Remarks:

1 Theorem 6.6 may hold for weakly dependent and heterogeneously

distributed data, as long as these data obey proper LLN and CLT.

2 Normalizing the OLS estimator with an inconsistent estimator of

D
−1/2
o destroys asymptotic normality.
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Consistent Estimation of Covariance Matrix

Consistent estimation of Do amounts to consistent estimation of Vo .

Write Vo = limT→∞VT = limT→∞
∑T−1

j=−T+1 ΓT (j), with

ΓT (j) =


1
T

∑T
t=j+1 IE(xtεtεt−jx

′
t−j), j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 IE(xt+jεt+jεtx

′
t), j = −1,−2, . . . .

When {xtεt} is weakly stationary, IE(xtεtεt−jx
′
t−j) depends only on

the time difference |j | but not on t. Thus,

ΓT (j) = ΓT (−j) = IE(xtεtεt−jx
′
t−j), j = 0, 1, 2, . . . ,

and Vo = Γ(0) + limT→∞ 2
∑T−1

j=1 Γ(j).
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Eicker-White Estimator

Case 1: When {xtεt} has no serial correlations,

Vo = lim
T→∞

ΓT (0) = lim
T→∞

1

T

T∑
t=1

IE(ε2t xtx
′
t).

A heteroskedasticity-consistent estimator of Vo is

V̂T =
1

T

T∑
t=1

ê2t xtx
′
t ,

which permits conditional heteroskedasticity of unknown form.

The Eicker-White estimator of Do is:

D̂T =

(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

ê2t xtx
′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1
.
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The Eicker-White estimator is “robust” when heteroskedasticity is

present and of an unknown form.

If εt are also conditionally homoskedastic: IE
(
ε2t | Yt−1,Wt

)
= σ2o ,

Vo = lim
T→∞

1

T

T∑
t=1

IE
[
IE
(
ε2t | Yt−1,Wt

)
xtx
′
t

]
= σ2o Mxx .

Then, Do is M−1xx VoM−1xx = σ2o M−1xx , and it can be consistently

estimated by

D̂T = σ̂2T

(
1

T

T∑
t=1

xtx
′
t

)−1
,

as in the classical model.
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Newey-West Estimator

Case 2: When {xtεt} exhibits serial correlations such that

V†T =

`(T )∑
j=−`(T )

ΓT (j)→ Vo ,

where `(T ) diverges with T , we may try to estimate V†T .

A difficulty: The sample counterpart
∑`(T )

j=−`(T ) Γ̂T (j), which is based

on the sample counterpart of ΓT (j), may not be p.s.d.

A heteroskedasticity and autocorrelation-consistent (HAC) estimator

that is guaranteed to be p.s.d. has the following form:

V̂
κ

T =
T−1∑

j=−T+1

κ
( j

`(T )

)
Γ̂T (j), (1)

where κ is a kernel function and `(T ) is its bandwidth.
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The estimator of Do due to Newey and West (1987),

D̂
κ

T =

(
1

T

T∑
t=1

xtx
′
t

)−1
V̂
κ

T

(
1

T

T∑
t=1

xtx
′
t

)−1
,

is robust to both conditional heteroskedasticity of εt and serial

correlations of xtεt .

The Eicker-White and Newey-West estimators do not rely on any

parametric model of cond. heteroskedasticity and serial correlations.

κ satisfies: |κ(x)| ≤ 1, κ(0) = 1, κ(x) = κ(−x) for all x ∈ R,∫
|κ(x)| dx <∞, κ is continuous at 0 and at all but a finite number

of other points in R, and∫ ∞
−∞

κ(x)e−ixω dx ≥ 0, ∀ω ∈ R.
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Some Commonly Used Kernel Functions

1 Bartlett kernel (Newey and West, 1987): κ(x) = 1− |x | for |x | ≤ 1,

and κ(x) = 0 otherwise.

2 Parzen kernel (Gallant, 1987):

κ(x) =


1− 6x2 + 6|x |3, |x | ≤ 1/2,

2(1− |x |)3, 1/2 ≤ |x | ≤ 1,

0, otherwise;

3 Quadratic spectral kernel (Andrews, 1991):

κ(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
;

4 Daniel kernel (Ng and Perron, 1996): κ(x) = sin(πx)
πx .
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Remarks:

Bandwidth `(T ): It can be of order o(T 1/2), Andrews (1991). (What

does this imply?)

The Bartlett and Parzen kernels have the bounded support [−1, 1],

but the quadratic spectral and Daniel kernels have unbounded

support.

Andrews (1991): The quadratic spectral kernel is to be preferred in

HAC estimation.

Rate of convergence: O(T−1/3) for the Bartlett kernel, and O(T−2/5)

for the Parzen and quadratic spectral.

The quadratic spectral kernel is more efficient asymptotically than the

Parzen kernel, and the Bartlett kernel is the least efficient.

The optimal choice of `(T ) is an important issue in practice.
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Wald Test

Null hypothesis: Rβo = r

Want to check if Rβ̂T is sufficiently “close” to r.

By Theorem 6.6, (RDoR′)−1/2
√
TR(β̂T − βo)

D−→ N (0, Iq), where

Do = M−1xx VoM−1xx .

Given a consistent estimator for Do :

D̂T =

(
1

T

T∑
t=1

xtx
′
t

)−1
V̂T

(
1

T

T∑
t=1

xtx
′
t

)−1
,

with V̂T be a consistent estimator of Vo , we have

(RD̂TR′)−1/2
√
TR(β̂T − βo)

D−→ N (0, Iq).
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The Wald test statistic is

WT = T (Rβ̂T − r)′(RD̂TR′)−1(Rβ̂T − r).

Theorem 6.10

Given yt = x′tβ + et , suppose that [B1](i), [B2] and [B3] hold. Then

under the null, WT
D−→ χ2(q), where q is the number of hypotheses.

Data are not required to be serially uncorrelated, homoskedastic, or

normally distributed.

The limiting χ2 distribution of the Wald test is only an approximation

to the exact distribution.
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Example: Given the specification yt = x′1,tb1 + x′2,tb2 + et , where x1,t is

(k − s)× 1 and x2,t is s × 1.

Hypothesis: Rβo = 0, where R = [0s×(k−s) Is ].

The Wald test statistic is

WT = T β̂
′
TR′

(
RD̂TR′

)−1
Rβ̂T

D−→ χ2(s),

where D̂T = (X′X/T )−1V̂T (X′X/T )−1. The exact form of WT

depends on D̂T .

When V̂T = σ̂2T (X′X/T ) is consistent for Vo , D̂T = σ̂2T (X′X/T )−1

is consistent for Do , and the Wald statistic becomes

WT = T β̂
′
TR′

[
R(X′X/T )−1R′

]−1
Rβ̂T/σ̂

2
T ,

which is s times the standard F statistic.
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Lagrange Multiplier (LM) Test

Given the constraint Rβ = r, the Lagrangian is

1

T
(y − Xβ)′(y − Xβ) + (Rβ − r)′λ,

where λ is the q× 1 vector of Lagrange multipliers. The solutions are:

λ̈T = 2
[
R(X′X/T )−1R′

]−1
(Rβ̂T − r),

β̈T = β̂T − (X′X/T )−1R′λ̈T/2.

The LM test checks if λ̈T (the “shadow price” of the constraint) is

sufficiently “close” to zero.
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By the asymptotic normality of
√
T (Rβ̂T − r),

Λ
−1/2
o

√
T λ̈T

D−→ N (0, Iq),

where Λo = 4(RM−1xx R′)−1(RDoR′)(RM−1xx R′)−1. Let V̈T be a consistent

estimator of Vo based on the constrained estimation result. Then,

Λ̈T = 4
[
R(X′X/T )−1R′

]−1[
R(X′X/T )−1V̈T (X′X/T )−1R′

]
[
R(X′X/T )−1R′

]−1
,

and Λ̈
−1/2
T

√
T λ̈T

D−→ N (0, Iq). The LM statistic is

LMT = T λ̈
′
T Λ̈
−1
T λ̈T .
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Theorem 6.12

Given yt = x′tβ + et , suppose that [B1](i), [B2] and [B3] hold. Then

under the null, LMT
D−→ χ2(q), where q is the number of hypotheses.

Writing Rβ̂T − r = R(X′X/T )−1X′(y − Xβ̈T )/T = R(X′X/T )−1X′ë/T ,

λ̈T = 2
[
R(X′X/T )−1R′

]−1
R(X′X/T )−1X′ë/T . The LM test is then

LMT = T ë′X(X′X)−1R′
[
R(X′X/T )−1V̈T (X′X/T )−1R′

]−1
R(X′X)−1X′ë.

That is, the LM test requires only constrained estimation.

Note: Under the null, WT − LMT
IP−→ 0; if Vo is known, the Wald and

LM tests would be algebraically equivalent. (why?)
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Example: Testing whether one would like to add additional s regressors to

the specification: yt = x′1,tb1 + et .

The unconstrained specification is

yt = x′1,tb1 + x′2,tb2 + et ,

and the null hypothesis is Rβo = 0 with R = [0s×(k−s) Is ].

The LM test can be computed as in previous page, using the

constrained estimator β̈T = (b̈
′
1,T 0′)′ with b̈1,T = (X′1X1)−1X′1y.

Letting X = [X1 X2] and ë = y − X1b̈1,T , suppose that

V̈T = σ̈2T (X′X/T ) is consistent for Vo under the null, where

σ̈2T =
∑T

t=1 ë
2
t /(T − k + s). Then, the LM test is

LMT = T ë′X(X′X)−1R′
[
R(X′X/T )−1R′

]−1
R(X′X)−1X′ë/σ̈2T .
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Using the formula for the inverse of a partitioned matrix,

R(X′X)−1R′ = [X′2(I− P1)X2]−1,

R(X′X)−1X′ = [X′2(I− P1)X2]−1X′2(I− P1).

Clearly, (I− P1)ë = ë. The LM statistic is thus

LMT = ë′X(X′X)−1R′
[
R(X′X)−1R′

]−1
R(X′X)−1X′ë/σ̈2T

= ë′(I− P1)X2[X′2(I− P1)X2]−1X′2(I− P1)ë/σ̈2T

= ë′X2[X′2(I− P1)X2]−1X′2ë/σ̈2T

= ë′X2R(X′X)−1R′X′2ë/σ̈2T .
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As X′1ë = 0, we can write

ë′X2R = [01×(k−s) ë′X2] = ë′X.

A simple version of the LM test reads

LMT =
ë′X(X′X)−1X′ë

ë′ë/(T − k + s)
= (T − k + s)R2,

where R2 is the non-centered R2 of the auxiliary regression of ë on X.

Note: The LM test may also be computed as TR2, if σ̈2T = ë′ë/T is an

MLE estimator.
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Likelihood Ratio (LR) Test

The OLS estimator β̂T is also the MLE β̃T that maximizes

LT (β, σ2) = −1

2
log(2π)− 1

2
log(σ2)− 1

T

T∑
t=1

(yt − x′tβ)2

2σ2
.

With êt = yt − x′tβ̃T , the unconstrained MLE of σ2 is

σ̃2T =
1

T

T∑
t=1

ê2t .

Given Rβ = r, let β̈T denote the constrained MLE of β. Then

ët = yt − x′tβ̈T , and the constrained MLE of σ2 is

σ̈2T =
1

T

T∑
t=1

ë2t .
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For H0 : Rβo = r, the LR test compares the constrained and

unconstrained LT :

LRT = −2T
(
LT (β̈T , σ̈

2
T )− LT (β̃T , σ̃

2
T )
)

= T log

(
σ̈2T
σ̃2T

)
.

The null would be rejected if LRT is far from zero.

Theorem 6.15

Given yt = x′tβ + et , suppose that [B1](i), [B2] and [B3] hold and that

σ̃2T (X′X/T ) is consistent for Vo . Then under the null hypothesis,

LRT
D−→ χ2(q),

where q is the number of hypotheses.
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Noting ë = X(β̃T − β̈T ) + ê and X′ê = 0, we have

σ̈2T = σ̃2T + (β̃T − β̈T )′(X′X/T )(β̃T − β̈T ).

We have seen

β̈T − β̃T = −(X′X/T )−1R′
[
R(X′X/T )−1R′

]−1
(Rβ̂T − r).

It follows that

σ̈2T = σ̃2T + (Rβ̃T − r)′[R(X′X/T )−1R′]−1(Rβ̃T − r),

and that

LRT = T log
(
1 + (Rβ̃T − r)′[R(X′X/T )−1R′]−1(Rβ̃T − r)/σ̃2T︸ ︷︷ ︸

=: aT

)
.
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Owing to consistency of β̂T , aT → 0. The mean value expansion of

log(1 + aT ) about aT = 0 yields

log(1 + aT ) ≈ (1 + a†T )−1aT ,

where a†T lies between aT and 0 and converges to zero. Then,

LRT = T (1 + a†T )−1aT = TaT + oIP(1),

where TaT is the Wald statistic with V̂T = σ̃2T (X′X/T ). When this V̂T is

consistent for Vo , LRT has a limiting χ2(q) distribution.

Note: The applicability of the LR test here is limited because it can not

be made robust to conditional heteroskedasticity and serial correlation.

(Why?)

C.-M. Kuan (National Taiwan Univ.) Asymptotic Least Squares Theory December 5, 2011 43 / 85



Remarks:

When the Wald test involves V̂T = σ̃2T (X′X/T ) and the LM test uses

V̈T = σ̈2T (X′X/T ), it can be shown that

WT ≥ LRT ≥ LMT .

Hence, conflicting inferences in finite samples may arise when the

critical values are between two statistics.

When V̂T = σ̃2T (X′X/T ) and V̈T = σ̈2T (X′X/T ) are all consistent for

Vo , the Wald, LM, and LR tests are asymptotically equivalent.
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Power of Tests

Consider the alternative hypothesis: Rβo = r + δ, where δ 6= 0.

Under the alternative,

√
T (Rβ̂T − r) =

√
TR(β̂T − βo) +

√
Tδ,

where the first term on the RHS converges and the second term

diverges.

We have IP(WT > c)→ 1 for any critical value c , because

1

T
WT

IP−→ δ′(RDoR′)−1δ.

The Wald test is therefore a consistent test.
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Example: Analysis of Suicide Rate

Part I: Estimation results based on different covariance matrices

const Dt ut−1 ut−1Dt R̄2

OLS Coeff. 5.60 −0.75 1.93 0.52 0.64

OLS s.e. 2.32∗ 3.00 1.17 1.27

White s.e. 2.23∗ 2.55 0.96∗ 1.04

NW-B s.e. 2.79∗ 3.62 1.09 1.26

(t-ratio) (2.00) (−0.21) (1.78) (0.42)

NW-QS s.e. 2.94 3.98 1.13 1.32

(t-ratio) (1.91) (−0.19) (1.72) (0.40)

FGLS Coeff. 19.14 0.73 0.13 −0.10

NW-B and NW-QS stand for the Newey-West estimates based on the

Bartlett and quadratic spectral kernels, respectively, with the truncation

lag chosen by the package in R; Dt = 1 for t > T ∗ = 1994.
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Part II: Estimation results based on different covariance matrices

const Dt ut−1 t tDt R̄2

OLS Coeff. 12.36 −15.26 0.38 −0.50 1.19 0.91

OLS s.e. 1.05∗∗ 2.04∗∗ 0.36 0.08∗∗ 0.14∗∗

White s.e. 0.71∗∗ 1.41∗∗ 0.26 0.05∗∗ 0.09∗∗

NW-B s.e. 1.67∗∗ 14.58 0.86 0.04∗∗ 0.70

(t-ratio) (7.41) (−1.05) (0.44) (−14.10) (1.69)

NW-QS s.e. 1.94∗∗ 17.35 1.01 0.04∗∗ 0.84

(t-ratio) (6.37) (−0.88) (0.38) (−12.43) (1.42)

FGLS Coeff. 14.67 −18.22 −0.23 −0.56 1.35

NW-B and NW-QS stand for the Newey-West estimates based on the

Bartlett and quadratic spectral kernels, respectively, with the truncation

lag chosen by the package in R; Dt = 1 for t > T ∗ = 1994.
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Instrumental Variable Estimator

OLS inconsistency:

1 A model omits relevant regressors.

2 A model includes lagged dependent variables as regressors and serially

correlated errors.

3 A model involves regressors that are measured with errors.

4 The dependent variable and regressors are jointly determined at the

same time (simultaneity problem).

5 The dependent variable is determined by some unobservable factors

which are correlated with regressors (selectivity problem).

To obtain consistency, let zt (k × 1) be variables taken from

(Yt−1,Wt) such that IE(ztεt) = 0 and zt are correlated with xt in

the sense that IE(ztx
′
t) is not singular.
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The sample counterpart of IE(ztεt) = IE[zt(yt − x′tβo)] = 0 is

1

T

T∑
t=1

[zt(yt − x′tβ)] = 0,

which is a system of k equations with k unknowns.

The solution is the instrumental variable (IV) estimator:

β̌T =

(
T∑
t=1

ztx
′
t

)−1( T∑
t=1

ztyt

)
IP−→M−1zx mzy = βo ,

under suitable LLN.

This is also a method of moment estimator, because it solves the

sample counterpart of the moment conditions: IE[zt(yt − x′tβo)] = 0.

This method breaks down when more than k instruments are available.
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Assume CLT: T−1/2
∑T

t=1 ztεt
D−→ N (0, Vo) with

Vo = lim
T→∞

var

(
1√
T

T∑
t=1

ztεt

)
.

The normalized IV estimator has asymptotic normality:

√
T (β̌T −βo) =

(
1

T

T∑
t=1

ztx
′
t

)−1(
1√
T

T∑
t=1

ztεt

)
D−→ N (0, Do),

where Do = M−1zx VoM−1zx .

Then, D̂
−1/2
T

√
T (β̌T − βo)

D−→ N (0, Ik), where D̂T is a consistent

estimator for Do .
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I (1) Variables

{yt} is said to be an I (1) (integrated of order 1) process if yt = yt−1 + εt ,

with εt satisfying:

[C1] {εt} is a weakly stationary process with mean zero and variance σ2ε
and obeys an FCLT:

1

σ∗
√
T

[Tr ]∑
t=1

εt =
1

σ∗
√
T

y[Tr ] ⇒ w(r), 0 ≤ r ≤ 1,

where w is standard Wiener process, and σ2∗ is the long-run variance of εt :

σ2∗ = lim
T→∞

var

(
1√
T

T∑
t=1

εt

)
.
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Partial sums of an I (0) series (e.g.,
∑t

i=1 εi ) form an I (1) series,

while taking first difference of an I (1) series (e.g., yt − yt−1) yields an

I (0) series.

A random walk is I (1) with i.i.d. εt and σ2
∗ = σ2

ε .

When εt = yt − yt−1 is a stationary ARMA(p, q) process, y is an I (1)

process and known as an ARIMA(p, 1, q) process.

An I (1) series yt has mean zero and variance increasing linearly with

t, and its autocovariances cov(yt , ys) do not decrease when |t − s|
increases.

Many macroeconomic and financial time series are (or behave like)

I (1) processes.
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ARIMA vs. ARMA Processes
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Figure: Sample paths of ARIMA and ARMA series.
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I (1) vs. Trend Stationarity

Trend stationary series: yt = ao + bot + εt , where εt are I (0).
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Figure: Sample paths of random walk and trend stationary series.
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Autoregression of an I (1) Variable

Suppose {yt} is a random walk such that yt = αoyt−1 + εt with αo = 1

and εt i.i.d. random variables with mean zero and variance σ2ε .

{yt} does not obey a LLN, and
∑T

t=2 yt−1εt = OIP(T ) and∑T
t=2 y

2
t−1 = OIP(T 2).

Given the specification: yt = αyt−1 + et , the OLS estimator of α is:

α̂T =

∑T
t=2 yt−1yt∑T
t=2 y

2
t−1

= 1 +

∑T
t=2 yt−1εt∑T
t=2 y

2
t−1

= 1 + OIP(T−1),

which is T -consistent. This is also known as a super consistent

estimator.
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Asymptotic Properties of the OLS Estimator

Lemma 7.1

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

(i) T−3/2
∑T

t=1 yt−1 ⇒ σ∗

∫ 1

0
w(r) dr ;

(ii) T−2
∑T

t=1 y
2
t−1 ⇒ σ2∗

∫ 1

0
w(r)2 dr ;

(iii) T−1
∑T

t=1 yt−1εt ⇒
1

2
[σ2∗w(1)2 − σ2ε ] = σ2∗

∫ 1

0
w(r) dw(r) +

1

2
(σ2∗ − σ2ε ),

where w is the standard Wiener process.

Note: When yt is a random walk, σ2∗ = σ2ε .
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Theorem 7.2

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Given the

specification yt = αyt−1 + et , the normalized OLS estimator of α is:

T (α̂T − 1) =

∑T
t=2 yt−1εt/T∑T
t=2 y

2
t−1/T

2
⇒

1
2

[
w(1)2 − σ2ε /σ2∗

]∫ 1
0 w(r)2 dr

.

where w is the standard Wiener process. When yt is a random walk,

T (α̂T − 1)⇒
1
2

[
w(1)2 − 1

]∫ 1
0 w(r)2 dr

,

which does not depend on σ2ε and σ2∗ and is asymptotically pivotal.
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Lemma 7.3

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

(i) T−2
∑T

t=1(yt−1 − ȳ−1)2 ⇒ σ2∗

∫ 1

0
w∗(r)2 dr ;

(ii) T−1
∑T

t=1(yt−1 − ȳ−1)εt ⇒ σ2∗

∫ 1

0
w∗(r) dw(r) +

1

2
(σ2∗ − σ2ε ),

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr .
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Theorem 7.4

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Given the

specification yt = c + αyt−1 + et , the normalized OLS estimators of α and

c are:

T (α̂T − 1)⇒
∫ 1
0 w∗(r)dw(r) + 1

2(1− σ2ε /σ2∗)∫ 1
0 w∗(r)2 dr

=: A,

√
TĉT ⇒ A

(
σ∗

∫ 1

0
w(r)dr

)
+ σ∗w(1).

In particular, when yt is a random walk,

T (α̂T − 1)⇒
∫ 1
0 w∗(r) dw(r)∫ 1
0 w∗(r)2 dr

.
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The limiting results for autoregressions with an I (1) variable are not

invariant to model specification.

All the results here are based on the data with DGP: yt = yt−1 + εt .

intercept. These results would break down if the DGP is

yt = co + yt−1 + εt with a non-zero co ; such series are said to be I (1)

with drift.

I (1) process with a drift:

yt = co + yt−1 + εt = co t +
t∑

i=1

εi ,

which contains a deterministic trend and an I (1) series without drift.
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Tests of Unit Root

1 Given the specification yt = αyt−1 + et , the unit root hypothesis is

αo = 1, and a leading unit-root test is the t test:

τ0 =

(∑T
t=2 y

2
t−1
)1/2

(α̂T − 1)

σ̂T ,1
,

where σ̂2T ,1 =
∑T

t=2(yt − α̂T yt−1)2/(T − 2).

2 Given the specification yt = c + αyt−1 + et , a unit-root test is

τc =

[∑T
t=2(yt−1 − ȳ−1)2

]1/2
(α̂T − 1)

σ̂T ,2
,

where σ̂2T ,2 =
∑T

t=2(yt − ĉT − α̂T yt−1)2/(T − 3).
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Theorem 7.5

Let yt be generated as a random walk. Then,

τ0 ⇒
1
2 [w(1)2 − 1][∫ 1
0 w(r)2 dr

]1/2 ,
τc ⇒

∫ 1
0 w∗(r) dw(r)[∫ 1
0 w∗(r)2 dr

]1/2 .
For the specification with a time trend variable:

yt = c + αyt−1 + β
(
t − T

2

)
+ et ,

the t-statistic of αo = 1 is denoted as τt .
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Dickey-Fuller distributions

Table: Some percentiles of the Dickey-Fuller distributions.

Test 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

τ0 −2.58 −2.23 −1.95 −1.62 −0.51 0.89 1.28 1.62 2.01

τc −3.42 −3.12 −2.86 −2.57 −1.57 −0.44 −0.08 0.23 0.60

τt −3.96 −3.67 −3.41 −3.13 −2.18 −1.25 −0.94 −0.66 −0.32

These distributions are not symmetric about zero and assume more

negative values.

τc assumes negatives values about 95% of times, and τt is virtually a

non-positive random variable.
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The Dickey-Fuller Distributions
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Figure: The distributions of the Dickey-Fuller τ0 and τc tests vs. N (0, 1).
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Implementation

In practice, we estimate one of the following specifications:

1 ∆yt = θyt−1 + et .

2 ∆yt = c + θyt−1 + et .

3 ∆yt = c + θyt−1 + β
(
t − T

2

)
+ et .

The unit-root hypothesis αo = 1 is now equivalent to θo = 0.

The weak limits of the normalized estimators T θ̂T are the same as

the respective limits of T (α̂T − 1) under the null hypothesis.

The unit-root tests are now computed as the t-ratios of these

specifications.
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Phillips-Perron Tests

Note: The Dickey-Fuller tests check only the random walk hypothesis and

are invalid for testing general I (1) processes.

Theorem 7.6

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

τ0 ⇒
σ∗
σε

(
1
2 [w(1)2 − σ2ε /σ2∗][∫ 1

0 w(r)2 dr
]1/2

)
,

τc ⇒
σ∗
σε

(∫ 1
0 w∗(r)dw(r) + 1

2(1− σ2ε /σ2∗)[∫ 1
0 w∗(r)2 dr

]1/2
)
,
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Let êt denote the OLS residuals and s2Tn a Newey-West type

estimator of σ2∗ based on êt :

s2Tn =
1

T − 1

T∑
t=2

ê2t +
2

T − 1

T−2∑
s=1

κ
( s
n

) T∑
t=s+2

êt êt−s ,

with κ a kernel function and n = n(T ) its bandwidth.

Phillips (1987) proposed the following modified τ0 and τc statistics:

Z (τ0) =
σ̂T
sTn

τ0 −
1
2(s2Tn − σ̂2T )

sTn
(∑T

t=2 y
2
t−1/T

2
)1/2 ,

Z (τc) =
σ̂T
sTn

τc −
1
2(s2T − σ̂2T )

sTn
[∑T

t=2(yt−1 − ȳ−1)2
]1/2 ;

see also Phillips and Perron (1988).
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The Phillips-Perron tests eliminate the nuisance parameters by suitable

transformations of τ0 and τc and have the same limits as those of the

Dickey-Fuller tests.

Corollary 7.7.

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

Z (τ0)⇒
1
2

[
w(1)2 − 1

][∫ 1
0 w(r)2 dr

]1/2 ,
Z (τc)⇒

∫ 1
0 w∗(r) dw(r)[∫ 1
0 w∗(r)2 dr

]1/2 .
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Augmented Dickey-Fuller (ADF) Tests

Said and Dickey (1984) suggest “filtering out” the correlations in a weakly

stationary process by a linear AR model with a proper order. The

“augmented” specifications are:

1 ∆yt = θyt−1 +
∑k

j=1 γj∆yt−j + et .

2 ∆yt = c + θyt−1 +
∑k

j=1 γj∆yt−j + et .

3 ∆yt = c + θyt−1 + β
(
t − T

2

)
+
∑k

j=1 γj∆yt−j + et .

Note: This approach avoids non-parametric kernel estimation of σ2∗ but

requires choosing a proper lag order k for the augmented specifications

(say, by a model selection criteria, such as AIC or SIC).
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KPSS Tests

{yt} is trend stationary if it fluctuates around a deterministic trend:

yt = ao + bo t + εt ,

where εt satisfy [C1]. When bo = 0, it is level stationary. Kwiatkowski,

Phillips, Schmidt, and Shin (1992) proposed testing stationarity by

ηT =
1

T 2 s2Tn

T∑
t=1

(
t∑

i=1

êi

)2

,

where s2Tn is a Newey-West estimator of σ2∗ based on êt .

To test the null of trend stationarity, êt = yt − âT − b̂T t.

To test the null of level stationarity, êt = yt − ȳ .
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The partial sums of êt = yt − ȳ are such that

[Tr ]∑
t=1

êt =

[Tr ]∑
t=1

(εt − ε̄) =

[Tr ]∑
t=1

εt −
[Tr ]

T

T∑
t=1

εt , r ∈ (0, 1].

Then by a suitable FCLT,

1

σ∗
√
T

[Tr ]∑
t=1

êt ⇒ w(r)− rw(1) = w0(r).

Similarly, given êt = yt − âT − b̂T t,

1

σ∗
√
T

[Tr ]∑
t=1

êt ⇒ w(r) + (2r − 3r2)w(1)− (6r − 6r2)

∫ 1

0
w(s)ds,

which is a “tide-down” process (it is zero at r = 1 with prob. one).
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Theorem 7.8

Let yt = ao + bo t + εt with εt satisfying [C1]. Then, ηT computed from

êt = yt − âT − b̂T t is:

ηT ⇒
∫ 1

0
f (r)2 dr ,

where f (r) = w(r) + (2r − 3r2)w(1)− (6r − 6r2)
∫ 1
0 w(s)ds.

Let yt = ao + εt with εt satisfying [C1]. Then, ηT computed from

êt = yt − ȳ is:

ηT ⇒
∫ 1

0
w0(r)2 dr ,

where w0 is the Brownian bridge.
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Table: Some percentiles of the distributions of the KPSS test.

Test 1% 2.5% 5% 10%

level stationarity 0.739 0.574 0.463 0.347

trend stationarity 0.216 0.176 0.146 0.119

These tests have power against I (1) series because ηT would diverge

under I (1) alternatives.

KPSS tests also have power against other alternatives, such as

stationarity with mean changes and trend stationarity with trend

breaks. Thus, rejecting the null of stationarity does not imply that

the series must be I (1).
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The KPSS Distributions
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Figure: The distributions of the KPSS tests.
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Spurious Regressions

Granger and Newbold (1974): Regressing one random walk on the

other typically yields a significant t-ratio. They refer to this result as

spurious regression.

Given the specification yt = α + βxt + et , let α̂T and β̂T denote the

OLS estimators for α and β, respectively, and the corresponding

t-ratios: tα = α̂T/sα and tβ = β̂T/sβ, where sα and sβ are the OLS

standard errors for α̂T and β̂T .

yt = yt−1 + ut and xt = xt−1 + vt , where {ut} and {vt} are mutually

independent processes satisfying the following condition.

C.-M. Kuan (National Taiwan Univ.) Asymptotic Least Squares Theory December 5, 2011 75 / 85



[C2] {ut} and {vt} are two weakly stationary processes with mean zero

and respective variances σ2u and σ2v and obey an FCLT with:

σ2y = lim
T→∞

1

T
IE

(
T∑
t=1

ut

)2

, σ2x = lim
T→∞

1

T
IE

(
T∑
t=1

vt

)2

.

We have the following results:

1

T 3/2

T∑
t=1

yt ⇒ σy

∫ 1

0
wy (r) dr ,

1

T 2

T∑
t=1

y2t ⇒ σ2y

∫ 1

0
wy (r)2 dr ,

where wy is a standard Wiener processes. Similarly,

1

T 3/2

T∑
t=1

xt ⇒ σx

∫ 1

0
wx(r) dr ,

1

T 2

T∑
t=1

x2t ⇒ σ2x

∫ 1

0
wx(r)2 dr .
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We also have

1

T 2

T∑
t=1

(yt − ȳ)2 ⇒ σ2y

∫ 1

0
wy (r)2 dr − σ2y

(∫ 1

0
wy (r) dr

)2

=: σ2ymy ,

1

T 2

T∑
t=1

(xt − x̄)2 ⇒ σ2x

∫ 1

0
wx(r)2 dr − σ2x

(∫ 1

0
wx(r) dr

)2

=: σ2xmx ,

where w∗y (t) = wy (t)−
∫ 1
0 wy (r) dr and w∗x (t) = wx(t)−

∫ 1
0 wx(r) dr are

two mutually independent, “de-meaned” Wiener processes. Also,

1

T 2

T∑
t=1

(yt − ȳ)(xt − x̄t)

⇒ σyσx

(∫ 1

0
wy (r)wx(r) dr −

∫ 1

0
wy (r) dr

∫ 1

0
wx(r) dr

)
=: σyσxmyx .
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Theorem 7.9

Let yt = yt−1 + ut and xt = xt−1 + vt , where {ut} and {vt} are mutually

independent and satisfy [C2]. Given the specification yt = α + βxt + et ,

(i) β̂T ⇒
σy myx

σx mx

,

(ii) T−1/2α̂T ⇒ σy

(∫ 1

0
wy (r) dr −

myx

mx

∫ 1

0
wx(r) dr

)
,

(iii) T−1/2 tβ ⇒
myx

(mymx −m2
yx)1/2

,

(iv) T−1/2 tα ⇒
mx

∫ 1
0 wy (r) dr −myx

∫ 1
0 wx(r)dr[

(mymx −m2
yx)
∫ 1
0 wx(r)2 dr

]1/2 ,

wx and wy are two mutually independent, standard Wiener processes.
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While the true parameters should be αo = βo = 0, β̂T has a limiting

distribution, and α̂T diverges at the rate T 1/2.

Theorem 7.9 (iii) and (iv) indicate that tα and tβ both diverge at the

rate T 1/2 and are likely to reject the null of αo = βo = 0 using the

critical values from the standard normal distribution.

Spurious trend: Nelson and Kang (1984) showed that, when {yt} is in

fact a random walk, one may easily find significant time trend

specification: yt = a + b t + et .

Phillips and Durlauf (1986) demonstrate that the F test (and hence

the t-ratio) of bo = 0 in the time trend specification above diverges

at the rate T , which explains why an incorrect inference would result.
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Cointegration

Consider an equilibrium relation between y and x : ay − bx = 0. With

real data (yt , xt), zt := ayt − bxt are equilibrium errors because they

need not be zero all the time.

yt and xt are both I (1):

A linear combination of them, zt , is, in general, an I (1) series. Then,

{zt} rarely crosses zero, and the equilibrium condition entails little

empirical restriction on zt .

When yt and xt involve the same random walk qt such that

yt = qt + ut and xt = cqt + vt , where {ut} and {vt} are I (0). Then,

zt := cyt − xt = cut − vt ,

which is a linear combination of I (0) series and hence is also I (0).
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Granger (1981), Granger and Weiss (1983), and Engle and

Granger (1987): Let yt be a d-dimensional vector I (1) series. The

elements of yt are cointegrated if there exists a d × 1 vector, α, such

that zt = α′yt is I (0). We say the elements of yt are CI(1,1).

The vector α is a cointegrating vector. The space spanned by linearly

independent cointegating vectors is the cointegrating space; the

number of linearly independent cointegrating vectors is the

cointegrating rank which is the dimension of the cointegrating space.

If the cointegrating rank is r , we can put r linearly independent

cointegrating vectors together and form the d × r matrix A such that

zt = A′yt is a vector I (0) series.

The cointegrating rank is at most d − 1. (Why?)
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Cointegrating Regression

Cointegrating regression: y1,t = α′y2,t + zt . Then, (1 α′)′ is the

cointegrating vector and zt are the regression (equilibrium) errors.

When the elements of yt are cointegrated, zt is correlated with y2,t .

Consistency of the OLS estimators do not matter asymptotically, but

correlation would result in finite-sample bias and efficiency loss.

Efficiency: Saikkonen (1991) proposed a modified co-integrating

regression:

y1,t = α′y2,t +
k∑

j=−k
∆y′2,t−jbj + et ,

so that the OLS estimator of α is asymptotically efficient.
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Tests of Cointegration

One can verify a cointegration relation by applying unit-root tests,

such as the augmented Dickey-Fuller test and the Phillips-Perron test,

to ẑt . The null hypothesis that a unit root is present is equivalent to

the hypothesis of no cointegration.

To implement a unit-root test on cointegration residuals ẑT , a

difficulty is that ẑT is not a raw series but a result of OLS fitting.

Thus, even when zt may be I (1), the residuals ẑt may not have much

variation and hence behave like a stationary series.

Engle and Granger (1987), Engle and Yoo (1987), and Davidson and

MacKinnon (1993) simulated proper critical values for the unit-root

tests on cointegrating residuals. Similar to the unit-root tests

discussed earlier, these critical values are all “model dependent.”
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Table: Some percentiles of the distributions of the cointegration τc test.

d 1% 2.5% 5% 10%

2 −3.90 −3.59 −3.34 −3.04

3 −4.29 −4.00 −3.74 −3.45

4 −4.64 −4.35 −4.10 −3.81

Drawbacks of cointegrating regressions:

1 The choice of the dependent variable is somewhat arbitrary.

2 This approach is more suitable for finding only one cointegrating

relationship. One may estimate multiple cointegration relations by a

vector regression.

It is now typical to adopt the maximum likelihood approach of

Johansen (1988) to estimate the cointegrating space directly.
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Error Correction Model (ECM)

When the elements of yt are cointegrated with A′yt = zt , then there

exists an error correction model (ECM):

∆yt = Bzt−1 + C1∆yt−1 + · · ·+ Ck∆yt−k + νt .

Cointegration characterizes the long-run equilibrium relations because

it deals with the levels of I (1) variables, and the ECM deals with the

differences of variables and describes short-run dynamics.

When cointegration exists, a vector AR model of ∆yt is misspecified

because it omits zt−1, and the parameter estimates are inconsistent.

We regress ∆yt on ẑt−1 and lagged ∆yt . Here, standard asymptotic

theory applies because ECM involves only stationary variables when

cointegration exists.
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