Elements of Probability Theory

CHUNG-MING KUAN

Department of Finance

National Taiwan University

December 5, 2009

Lecture Outline

(1) Probability Space and Random Variables

- Probability Space
- Random Variables
- Moments and Norms
(2) Conditional Distributions and Moments
- Conditional Distributions
- Conditional Moments
(3) Modes of Convergence
- Almost Sure Convergence
- Convergence in Probability
- Convergence in Distribution

4 Stochastic Order Notations

Lecture Outline (cont'd)

(5) Law of Large Numbers
(6) Central Limit Theorem
(7) Stochastic Processes

- Brownian motion
- Weak Convergence
(8) Functional Central Limit Theorem

Probability Space and σ-Algebra

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$, where
(1) Ω is the outcome space, whose elements ω are outcomes of the random experiment,
(2) \mathcal{F} is a a σ-algebra, a collection of subsets of Ω,
(3) \mathbb{P} is a a probability measure assigned to the elements in \mathcal{F}.
- \mathcal{F} is a σ-algebra if
(1) $\Omega \in \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$,
(3) if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}$.
- By (2), $\Omega^{c}=\emptyset \in \mathcal{F}$. From de Mongan's law,

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{c}=\bigcap_{n=1}^{\infty} A_{n}^{c} \in \mathcal{F} .
$$

Probability Measure

- $\mathbb{P}: \mathcal{F} \mapsto[0,1]$ is a real-valued set function such that
(1) $\mathbb{P}(\Omega)=1$,
(2) $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$.
(3) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are disjoint, then $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)$.
- $\mathbb{P}(\emptyset)=0, \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A), \mathbb{P}(A) \leq \mathbb{P}(B)$ if $A \subseteq B$, and

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

- If $\left\{A_{n}\right\}$ is an increasing (decreasing) sequence in \mathcal{F} with the limiting set A, then $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}(A)$.

Borel Field

- Let \mathcal{C} be a collection of subsets of Ω. The σ-algebra generated by \mathcal{C}, $\sigma(\mathcal{C})$, is the intersection of all σ-algebras that contain \mathcal{C} and hence the smallest σ-algebra containing \mathcal{C}.
- When $\Omega=\mathbb{R}$, the Borel field, \mathcal{B}, is the σ-algebra generated by all open intervals (a, b) in \mathbb{R}.
- Note that $(a, b),[a, b],(a, b]$, and $(-\infty, b]$ can be obtained from each other by taking complement, union and/or intersection. For example,

$$
(a, b]=\bigcap_{n=1}^{\infty}\left(a, b+\frac{1}{n}\right), \quad(a, b)=\bigcup_{n=1}^{\infty}\left(a, b-\frac{1}{n}\right]
$$

Thus, the collection all open intervals (closed intervals, half-open intervals or half lines) generates the same Borel field.

- The Borel field on $\mathbb{R}^{d}, \mathcal{B}^{d}$, is generated by all open hypercubes:

$$
\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \cdots \times\left(a_{d}, b_{d}\right)
$$

- \mathcal{B}^{d} can be generated by all closed hypercubes:

$$
\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{d}, b_{d}\right]
$$

or by

$$
\left(-\infty, b_{1}\right] \times\left(-\infty, b_{2}\right] \times \cdots \times\left(-\infty, b_{d}\right]
$$

- The sets that generate the Borel field \mathcal{B}^{d} are all Borel sets.

Random Variable

- A random variable z defined on $(\Omega, \mathcal{F}, \mathbb{P})$ is a function $z: \Omega \mapsto \mathbb{R}$ such that for every B in the Borel field \mathcal{B}, its inverse image is in \mathcal{F} :

$$
z^{-1}(B)=\{\omega: z(\omega) \in B\} \in \mathcal{F}
$$

That is, z is a $\mathcal{F} / \mathcal{B}$-measurable (or simply \mathcal{F}-measurable) function.

- Given ω, the resulting value $z(\omega)$ is known as a realization of z.
- $A \mathbb{R}^{d}$ valued random variable (random vector) \mathbf{z} defined on $(\Omega, \mathcal{F}, \mathbb{P})$ is: $\mathbf{z}: \Omega \mapsto \mathbb{R}^{d}$ such that for every $B \in \mathcal{B}^{d}$,

$$
\mathbf{z}^{-1}(B)=\{\omega: \mathbf{z}(\omega) \in B\} \in \mathcal{F}
$$

i.e., \mathbf{z} is a $\mathcal{F} / \mathcal{B}^{d}$-measurable function.

Borel Measurable

- All the inverse images of random vector $\mathbf{z}, \mathbf{z}^{-1}(B)$, form a σ-algebra, denoted as $\sigma(\mathbf{z})$.
- It is known as the σ-algebra generated by \mathbf{z}, or the information set associated with \mathbf{z}.
- It is the smallest σ-algebra in \mathcal{F} such that \mathbf{z} is measurable.
- A function $g: \mathbb{R} \mapsto \mathbb{R}$ is \mathcal{B}-measurable or Borel measurable if

$$
\{\zeta \in \mathbb{R}: g(\zeta) \leq b\} \in \mathcal{B}
$$

- For random variable z defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and Borel measurable function $g(\cdot), g(z)$ is a random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$. The same conclusion holds for d-dimensional random vector \mathbf{z} and \mathcal{B}^{d}-measurable function $g(\cdot)$.

Distribution Function

- The joint distribution function of \mathbf{z} is a non-decreasing, right-continuous function F_{z} such that for $\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}\right)^{\prime} \in \mathbb{R}^{d}$,

$$
F_{\mathbf{z}}(\zeta)=\mathbb{P}\left\{\omega \in \Omega: z_{1}(\omega) \leq \zeta_{1}, \ldots, z_{d}(\omega) \leq \zeta_{d}\right\}
$$

with

$$
\lim _{\zeta_{1} \rightarrow-\infty, \ldots, \zeta_{d} \rightarrow-\infty} F_{\mathbf{z}}(\zeta)=0, \quad \lim _{\zeta_{1} \rightarrow \infty, \ldots, \zeta_{d} \rightarrow \infty} F_{\mathbf{z}}(\zeta)=1
$$

- The marginal distribution function of the $i^{\text {th }}$ component $\mathbf{o f} \mathbf{z}$ is

$$
F_{z_{i}}\left(\zeta_{i}\right)=\mathbb{P}\left\{\omega \in \Omega: z_{i}(\omega) \leq \zeta_{i}\right\}=F_{\mathrm{z}}\left(\infty, \ldots, \infty, \zeta_{i}, \infty, \ldots, \infty\right)
$$

Independence

- y and z are (pairwise) independent iff for any Borel sets B_{1} and B_{2},

$$
\mathbb{P}\left(y \in B_{1} \text { and } z \in B_{2}\right)=\mathbb{P}\left(y \in B_{1}\right) \mathbb{P}\left(z \in B_{2}\right)
$$

- A sequence of random variables $\left\{z_{i}\right\}$ is totally independent if

$$
\mathbb{P}\left(\bigcap_{\text {all } i}\left\{z_{i} \in B_{i}\right\}\right)=\prod_{\text {all } i} \mathbb{P}\left(z_{i} \in B_{i}\right) .
$$

Lemma 5.1

Let $\left\{z_{i}\right\}$ be a sequence of independent random variables and h_{i}, $i=1,2, \ldots$ be Borel-measurable functions. Then $\left\{h_{i}\left(z_{i}\right)\right\}$ is also a sequence of independent random variables.

Expectation

- The expectation of Z_{i} is the Lebesgue integral of z_{i} wrt to \mathbb{P} :

$$
\mathbb{E}\left(z_{i}\right)=\int_{\Omega} z_{i}(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

In terms of its distribution function,

$$
\mathbb{E}\left(z_{i}\right)=\int_{\mathbb{R}^{d}} \zeta_{i} \mathrm{~d} F_{z}(\zeta)=\int_{\mathbb{R}} \zeta_{i} \mathrm{~d} F_{z_{i}}\left(\zeta_{i}\right) .
$$

- For Borel measurable function $g(\cdot)$ of \mathbf{z},

$$
\mathbb{E}[g(\mathbf{z})]=\int_{\Omega} g(\mathbf{z}(\omega)) \mathrm{d} \mathbb{P}(\omega)=\int_{\mathbb{R}^{d}} g(\zeta) \mathrm{d} F_{\mathbf{z}}(\zeta)
$$

For example, the covariance matrix of $\mathbf{z} \mathbb{E}\left(\mathbf{z z}^{\prime}\right)$.

A function g is convex on a set S if for any $a \in[0,1]$ and any x, y in S,

$$
g(a x+(1-a) y) \leq a g(x)+(1-a) g(y)
$$

g is concave on S if the inequality above is reversed.

Lemma 5.2 (Jensen)

Let g be a convex function on the support of z. For an integrable random variable z such that $g(z)$ is integrable, $g(\mathbb{E}(z)) \leq \mathbb{E}[g(z)]$; the inequality reverses if g is concave.

L_{p}-Norm

- For random variable z with finite p th moment, its L_{p}-norm is:

$$
\|z\|_{p}=\left[\mathbb{E}\left(z^{p}\right)\right]^{1 / p} .
$$

- The inner product of square integrable random variables z_{i} and z_{j} is:

$$
\left\langle z_{i}, z_{j}\right\rangle=\mathbb{E}\left(z_{i} z_{j}\right)
$$

The L_{2}-norm of z_{i} can be obtained as $\left\|z_{i}\right\|_{2}=\left\langle z_{i}, z_{i}\right\rangle^{1 / 2}$.

- For any $c>0$ and $p>0$, note that
$c^{p} \mathbb{P}(|z| \geq c)=c^{p} \int \mathbf{1}_{\{\zeta:|\zeta| \geq c\}} d F_{z}(\zeta) \leq \int_{\{\zeta:|\zeta| \geq c\}}|\zeta|^{p} d F_{z}(\zeta) \leq \mathbb{E}|z|^{p}$,
where $\mathbf{1}_{A}$ is the indicator function of the event A.

Inequalities

Lemma 5.3 (Markov)

Let z be a random variable with finite p th moment. Then,

$$
\mathbb{P}(|z| \geq c) \leq \frac{\mathbb{E}|z|^{p}}{c^{p}}
$$

where c is a positive real number.

- For $p=2$, Markov's inequality is also known as Chebyshev's inequality.
- Markov's inequality is trivial if c is small such that $\mathbb{E}|z|^{p} / c^{p}>1$.

When c becomes large, the probability that z assumes very extreme values will be vanishing at the rate c^{-p}.

Lemma 5.4 (Hölder)

Let y be a random variable with finite p th moment $(p>1)$ and z a random variable with finite $q^{t h}$ moment $(q=p /(p-1))$. Then,

$$
\mathbb{E}|y z| \leq\|y\|_{p}\|z\|_{q} .
$$

Since $|\mathbb{E}(y z)| \leq \mathbb{E}|y z|$, we also have:

Lemma 5.5 (Cauchy-Schwatz)

Let y and z be two square integrable random variables. Then,

$$
\mathbb{E}(y z) \mid \leq\|y\|_{2}\|z\|_{2} .
$$

Let $y=1$ and $x=z^{p}$. For $q>p$ and $r=q / p$, by Hölder's inequality,

$$
\mathbb{E}\left|z^{p}\right| \leq\|x\|_{r}\|y\|_{r /(r-1)}=\left[\mathbb{E}\left(z^{p r}\right)\right]^{1 / r}=\left[\mathbb{E}\left(z^{q}\right)\right]^{p / q} .
$$

Lemma 5.6 (Liapunov)

Let z be a random variable with finite q th moment. Then for $p<q$, $\|z\|_{p} \leq\|z\|_{q}$.

Lemma 5.7 (Minkowski)

Let $z_{i}, i=1, \ldots, n$, be random variables with finite p th moment $(p \geq 1)$.
Then, $\left\|\sum_{i=1}^{n} z_{i}\right\|_{p} \leq \sum_{i=1}^{n}\left\|z_{i}\right\|_{p}$.

When $n=2$, this is just the triangle inequality for L_{p}-norms.

Conditional Distributions

- Given $A, B \in \mathcal{F}$, suppose we know B has occurred. Given the outcome space is restricted to B, the likelihood of A is characterized by the conditional probability: $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B)$.
- The conditional density function of \mathbf{z} given $\mathbf{y}=\eta$ is

$$
f_{\mathbf{z} \mid \mathbf{y}}(\zeta \mid \mathbf{y}=\eta)=\frac{f_{\mathbf{z}, \mathbf{y}}(\zeta, \eta)}{f_{\mathbf{y}}(\eta)}
$$

- $f_{\mathbf{z} \mid \mathbf{y}}(\zeta \mid \mathbf{y}=\eta)$ is clearly non-negative. Also

$$
\int_{\mathbb{R}^{d}} f_{\mathbf{z} \mid \mathbf{y}}(\zeta \mid \mathbf{y}=\eta) d \zeta=\frac{1}{f_{\mathbf{y}}(\eta)} \int_{\mathbb{R}^{d}} f_{\mathbf{z}, \mathbf{y}}(\zeta, \eta) d \zeta=\frac{1}{f_{\mathbf{y}}(\eta)} f_{\mathbf{y}}(\eta)=1
$$

That is, $f_{\mathbf{z} \mid \mathbf{y}}(\zeta \mid \mathbf{y}=\eta)$ is a legitimate density function.

- Given the conditional density function $f_{\mathbf{z} \mid \mathbf{y}}$, for $A \in \mathcal{B}^{d}$,

$$
\mathbb{P}(\mathbf{z} \in A \mid \mathbf{y}=\eta)=\int_{A} f_{z \mid \mathbf{y}}(\zeta \mid \mathbf{y}=\eta) d \zeta
$$

This probability is defined even when $\mathbb{P}(\mathbf{y}=\eta)$ is zero.

- When $A=\left(-\infty, \zeta_{1}\right] \times \cdots \times\left(-\infty, \zeta_{d}\right]$, the conditional distribution function is

$$
F_{\mathrm{z} \mid \mathbf{y}}(\zeta \mid \mathbf{y}=\eta)=\mathbb{P}\left(z_{1} \leq \zeta_{1}, \ldots, z_{d} \leq \zeta_{d} \mid \mathbf{y}=\eta\right)
$$

- When \mathbf{z} and \mathbf{y} are independent, the conditional density (distribution) reduces to the unconditional density (distribution).
- Let \mathcal{G} be a sub- σ-algebra of \mathcal{F}, the conditional expectation $\mathbb{E}(\mathbf{z} \mid \mathcal{G})$ is the integrable and \mathcal{G}-measurable random variable satisfying

$$
\int_{G} \mathbb{E}(\mathbf{z} \mid \mathcal{G}) \mathrm{d} \mathbb{P}=\int_{G} \mathbf{z d} \mathbb{P}, \quad \forall G \in \mathcal{G}
$$

- Suppose that \mathcal{G} is the trivial σ-algebra $\{\Omega, \emptyset\}$, then $\mathbb{E}(\mathbf{z} \mid \mathcal{G})$ must be a constant c, so that

$$
\mathbb{E}(\mathbf{z})=\int_{\Omega} \mathbf{z d} \mathbb{P}=\int_{\Omega} \mathbf{c} d \mathbb{P}=\mathbf{c} .
$$

- Consider $\mathcal{G}=\sigma(\mathbf{y})$, the σ-algebra generated by \mathbf{y}.

$$
\mathbb{E}(\mathbf{z} \mid \mathbf{y})=\mathbb{E}[\mathbf{z} \mid \sigma(\mathbf{y})]
$$

which is interpreted as the prediction of \mathbf{z} given all the information associated with \mathbf{y}.

By definition,

$$
\mathbb{E}[\mathbb{E}(\mathbf{z} \mid \mathcal{G})]=\int_{\Omega} \mathbb{E}(\mathbf{z} \mid \mathcal{G}) \mathrm{d} \mathbb{P}=\int_{\Omega} \mathbf{z d} \mathbb{P}=\mathbb{E}(\mathbf{z}) ;
$$

That is, only a smaller σ-algebra matters in conditional expectation.

Lemma 5.9 (Law of Iterated Expectations)

Let \mathcal{G} and \mathcal{H} be two sub- σ-algebras of \mathcal{F} such that $\mathcal{G} \subseteq \mathcal{H}$. Then for the integrable random vector \mathbf{z},

$$
\mathbb{E}[\mathbb{E}(\mathbf{z} \mid \mathcal{H}) \mid \mathcal{G}]=\mathbb{E}[\mathbb{E}(\mathbf{z} \mid \mathcal{G}) \mid \mathcal{H}]=\mathbb{E}(\mathbf{z} \mid \mathcal{G})
$$

- If \mathbf{z} is \mathcal{G}-measurable, then $\mathbb{E}[g(\mathbf{z}) \mathbf{x} \mid \mathcal{G}]=g(\mathbf{z}) \mathbb{E}(\mathbf{x} \mid \mathcal{G})$ with prob. 1 .

Lemma 5.11

Let z be a square integrable random variable. Then

$$
\mathbb{E}[z-\mathbb{E}(z \mid \mathcal{G})]^{2} \leq \mathbb{E}(z-\tilde{z})^{2}
$$

for any \mathcal{G}-measurable random variable \tilde{z}.
Proof: For any square integrable, \mathcal{G}-measurable random variable \tilde{z},

$$
\mathbb{E}([z-\mathbb{E}(z \mid \mathcal{G})] \tilde{z})=\mathbb{E}([\mathbb{E}(z \mid \mathcal{G})-\mathbb{E}(z \mid \mathcal{G})] \tilde{z})=0
$$

It follows that

$$
\begin{aligned}
\mathbb{E}(z-\tilde{z})^{2} & =\mathbb{E}[z-\mathbb{E}(z \mid \mathcal{G})+\mathbb{E}(z \mid \mathcal{G})-\tilde{z}]^{2} \\
& =\mathbb{E}[z-\mathbb{E}(z \mid \mathcal{G})]^{2}+\mathbb{E}[\mathbb{E}(z \mid \mathcal{G})-\tilde{z}]^{2} \\
& \geq \mathbb{E}[z-\mathbb{E}(z \mid \mathcal{G})]^{2} .
\end{aligned}
$$

- The conditional variance-covariance matrix of \mathbf{z} given \mathbf{y} is

$$
\begin{aligned}
\operatorname{var}(\mathbf{z} \mid \mathbf{y}) & =\mathbb{E}\left([\mathbf{z}-\mathbb{E}(\mathbf{z} \mid \mathbf{y})][\mathbf{z}-\mathbb{E}(\mathbf{z} \mid \mathbf{y})]^{\prime} \mid \mathbf{y}\right) \\
& =\mathbb{E}\left(\mathbf{z} \mathbf{z}^{\prime} \mid \mathbf{y}\right)-\mathbb{E}(\mathbf{z} \mid \mathbf{y}) \mathbb{E}(\mathbf{z} \mid \mathbf{y})^{\prime}
\end{aligned}
$$

which leads to decomposition of analysis of variance:

$$
\operatorname{var}(\mathbf{z})=\mathbb{E}[\operatorname{var}(\mathbf{z} \mid \mathbf{y})]+\operatorname{var}(\mathbb{E}(\mathbf{z} \mid \mathbf{y}))
$$

- Example 5.12: Suppose that

$$
\left[\begin{array}{c}
\mathbf{y} \\
\mathbf{x}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{\mathrm{y}} \\
\boldsymbol{\mu}_{\mathrm{x}}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{\mathrm{yy}} & \boldsymbol{\Sigma}_{\mathrm{xy}}^{\prime} \\
\boldsymbol{\Sigma}_{\mathrm{xy}} & \boldsymbol{\Sigma}_{\mathrm{xx}}
\end{array}\right]\right)
$$

Then,

$$
\begin{aligned}
\mathbb{E}(\mathbf{y} \mid \mathbf{x}) & =\boldsymbol{\mu}_{\mathbf{y}}-\boldsymbol{\Sigma}_{\mathrm{xy}}^{\prime} \boldsymbol{\Sigma}_{\mathrm{xx}}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right), \\
\operatorname{var}(\mathbf{y} \mid \mathbf{x}) & =\operatorname{var}(\mathbf{y})-\operatorname{var}(\mathbb{E}(\mathbf{y} \mid \mathbf{x}))=\boldsymbol{\Sigma}_{\mathbf{y y}}-\boldsymbol{\Sigma}_{\mathrm{xy}}^{\prime} \boldsymbol{\Sigma}_{\mathrm{xx}}^{-1} \boldsymbol{\Sigma}_{\mathrm{xy}} .
\end{aligned}
$$

Almost Sure Convergence

A sequence of random variables, $\left\{z_{n}(\cdot)\right\}_{n=1,2, \ldots}$, is such that for a given ω, $z_{n}(\omega)$ is a realization of the random element ω with index n, and that for a given $n, z_{n}(\cdot)$ is a random variable.

Almost Sure Convergence

Suppose $\left\{z_{n}\right\}$ and z are all defined on $(\Omega, \mathcal{F}, \mathbb{P}) .\left\{z_{n}\right\}$ is said to converge to z almost surely if, and only if,

$$
\mathbb{P}\left(\omega: z_{n}(\omega) \rightarrow z(\omega) \text { as } n \rightarrow \infty\right)=1
$$

denoted as $z_{n} \xrightarrow{\text { a.s. }} z$ or $z_{n} \rightarrow z$ a.s. (with prob. 1).

Lemma 5.13

Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a function continuous on $S_{g} \subseteq \mathbb{R}$. If $z_{n} \xrightarrow{\text { a.s. }} z$, where z is a random variable such that $\mathbb{P}\left(z \in S_{g}\right)=1$, then $g\left(z_{n}\right) \xrightarrow{\text { a.s. }} g(z)$.

Proof: Let $\Omega_{0}=\left\{\omega: z_{n}(\omega) \rightarrow z(\omega)\right\}$ and $\Omega_{1}=\left\{\omega: z(\omega) \in S_{g}\right\}$. Thus, for $\omega \in\left(\Omega_{0} \cap \Omega_{1}\right)$, continuity of g ensures that $g\left(z_{n}(\omega)\right) \rightarrow g(z(\omega))$. Note that

$$
\left(\Omega_{0} \cap \Omega_{1}\right)^{c}=\Omega_{0}^{c} \cup \Omega_{1}^{c}
$$

which has probability zero because $\mathbb{P}\left(\Omega_{0}^{c}\right)=\mathbb{P}\left(\Omega_{1}^{c}\right)=0$. (Why?) It follows that $\Omega_{0} \cap \Omega_{1}$ has probability one, showing that $g\left(z_{n}\right) \rightarrow g(z)$ with probability one.

Convergence in Probability

Convergence in Probability

$\left\{z_{n}\right\}$ is said to converge to z in probability if for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\omega:\left|z_{n}(\omega)-z(\omega)\right|>\epsilon\right)=0
$$

or equivalently, $\lim _{n \rightarrow \infty} \mathbb{P}\left(\omega:\left|z_{n}(\omega)-z(\omega)\right| \leq \epsilon\right)=1$. This is denoted as $z_{n} \xrightarrow{\mathbf{P}} z$ or $z_{n} \rightarrow z$ in probability.

Note: In this definition, the events $\Omega_{n}(\epsilon)=\left\{\omega\right.$: $\left.\left|z_{n}(\omega)-z(\omega)\right| \leq \epsilon\right\}$ may vary with n, and convergence is referred to the probability of such events: $p_{n}=\mathbb{P}\left(\Omega_{n}(\epsilon)\right)$, rather than the random variables z_{n}.

Almost sure convergence implies convergence in probability.

To see this, let Ω_{0} denote the set of ω such that $z_{n}(\omega) \rightarrow z(\omega)$. For $\omega \in \Omega_{0}$, there is some m such that ω is in $\Omega_{n}(\epsilon)$ for all $n>m$. That is,

$$
\Omega_{0} \subseteq \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \Omega_{n}(\epsilon) \in \mathcal{F}
$$

As $\cap_{n=m}^{\infty} \Omega_{n}(\epsilon)$ is non-decreasing in m, it follows that

$$
\begin{aligned}
\mathbb{P}\left(\Omega_{0}\right) & \leq \mathbb{P}\left(\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \Omega_{n}(\epsilon)\right) \\
& =\lim _{m \rightarrow \infty} \mathbb{P}\left(\bigcap_{n=m}^{\infty} \Omega_{n}(\epsilon)\right) \leq \lim _{m \rightarrow \infty} \mathbb{P}\left(\Omega_{m}(\epsilon)\right) .
\end{aligned}
$$

- Example 5.15

Let $\Omega=[0,1]$ and \mathbb{P} be the Lebesgue measure. Consider the sequence of intervals $\left\{I_{n}\right\}$ in $[0,1]:[0,1 / 2),[1 / 2,1],[0,1 / 3)$, $[1 / 3,2 / 3),[2 / 3,1], \ldots$, and let $z_{n}=\mathbf{1}_{I_{n}}$. When n tends to infinity, I_{n} shrinks toward a singleton. For $0<\epsilon<1$, we have

$$
\mathbb{P}\left(\left|z_{n}\right|>\epsilon\right)=\mathbb{P}\left(I_{n}\right) \rightarrow 0
$$

which shows $z_{n} \xrightarrow{\mathbf{P}} 0$. On the other hand, each $\omega \in[0,1]$ must be covered by infinitely many intervals, so that $z_{n}(\omega)=1$ for infinitely many n. This shows that $z_{n}(\omega)$ does not converge to zero.
Note: Convergence in probability permits z_{n} to deviate from the probability limit infinitely often, but almost sure convergence does not, except for those ω in the set of probability zero.

Lemma 5.16

Let $\left\{z_{n}\right\}$ be a sequence of square integrable random variables. If $\mathbb{E}\left(z_{n}\right) \rightarrow c$ and $\operatorname{var}\left(z_{n}\right) \rightarrow 0$, then $z_{n} \xrightarrow{\mathbf{P}} c$.

Lemma 5.17

Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a function continuous on $S_{g} \subseteq \mathbb{R}$. If $z_{n} \xrightarrow{\mathbf{P}} z$, where z is a random variable such that $\mathbb{P}\left(z \in S_{g}\right)=1$, then $g\left(z_{n}\right) \xrightarrow{\mathbb{P}} g(z)$.

Proof: By the continuity of g, for each $\epsilon>0$, we can find a $\delta>0$ s.t.

$$
\begin{aligned}
\left\{\omega: \mid z_{n}(\omega)\right. & -z(\omega) \mid \leq \delta\} \cap\left\{\omega: z(\omega) \in S_{g}\right\} \\
& \subseteq\left\{\omega:\left|g\left(z_{n}(\omega)\right)-g(z(\omega))\right| \leq \epsilon\right\}
\end{aligned}
$$

Taking complementation of both sides, we have

$$
\mathbb{P}\left(\left|g\left(z_{n}\right)-g(z)\right|>\epsilon\right) \leq \mathbb{P}\left(\left|z_{n}-z\right|>\delta\right) \rightarrow 0
$$

Lemma 5.13 and Lemma 5.17 are readily generalized to \mathbb{R}^{d}-valued random variables. For instance, $\mathbf{z}_{n} \xrightarrow{\text { a.s. }} \mathbf{z}\left(\mathbf{z}_{n} \xrightarrow{\mathbf{P}} \mathbf{z}\right)$ implies

$$
\begin{gathered}
z_{1, n}+z_{2, n} \xrightarrow{\text { a.s. }}(\xrightarrow{\mathbb{P}}) z_{1}+z_{2}, \\
z_{1, n} z_{2, n} \xrightarrow{\text { a.s. }}(\xrightarrow{\mathbb{P}}) z_{1} z_{2}, \\
z_{1, n}^{2}+z_{2, n}^{2} \xrightarrow{\text { a.s. }}(\xrightarrow{\mathbb{P}}) z_{1}^{2}+z_{2}^{2},
\end{gathered}
$$

where $z_{1, n}, z_{2, n}$ are two elements of \mathbf{z}_{n} and z_{1}, z_{2} are the corresponding elements of \mathbf{z}. Also, provided that $z_{2} \neq 0$ with probability one,

$$
z_{1, n} / z_{2, n} \xrightarrow{\text { a.s. }}(\xrightarrow{\mathbb{P}}) z_{1} / z_{2}
$$

Convergence in Distribution

Convergence in Distribution

$\left\{z_{n}\right\}$ is said to converge to z in distribution, denoted as $z_{n} \xrightarrow{D} z$, if

$$
\lim _{n \rightarrow \infty} F_{z_{n}}(\zeta)=F_{z}(\zeta)
$$

for every continuity point ζ of F_{z}.

- We also say that z_{n} is asymptotically distributed as F_{z}, denoted as $z_{n} \stackrel{A}{\sim} F_{z} ; F_{z}$ is thus known as the limiting distribution of z_{n}.
- Cramér-Wold Device. Let $\left\{\mathbf{z}_{n}\right\}$ be a sequence of random vectors in $\mathbb{R}^{\boldsymbol{d}}$. Then $\mathbf{z}_{n} \xrightarrow{D} \mathbf{z}$ if and only if $\boldsymbol{\alpha}^{\prime} \mathbf{z}_{n} \xrightarrow{D} \boldsymbol{\alpha}^{\prime} \mathbf{z}$ for every $\boldsymbol{\alpha} \in \mathbb{R}^{\boldsymbol{d}}$ such that $\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}=1$.

Lemma 5.19

If $z_{n} \xrightarrow{\mathbb{P}} z$, then $z_{n} \xrightarrow{D} z$. For a constant $c, z_{n} \xrightarrow{\mathbb{P}} c$ iff $z_{n} \xrightarrow{D} c$.
Proof: For some arbitrary $\epsilon>0$ and a continuity point ζ of F_{z}, we have

$$
\begin{aligned}
& \mathbb{P}\left(z_{n} \leq \zeta\right)= \\
& \begin{aligned}
& \mathbb{P}\left(\left\{z_{n} \leq \zeta\right\} \cap\left\{\left|z_{n}-z\right| \leq \epsilon\right\}\right)+\mathbb{P}\left(\left\{z_{n} \leq \zeta\right\} \cap\left\{\left|z_{n}-z\right|>\epsilon\right\}\right) \\
& \leq \mathbb{P}(z \leq \zeta+\epsilon)+\mathbb{P}\left(\left|z_{n}-z\right|>\epsilon\right)
\end{aligned}
\end{aligned}
$$

Similarly, $\mathbb{P}(z \leq \zeta-\epsilon) \leq \mathbb{P}\left(z_{n} \leq \zeta\right)+\mathbb{P}\left(\left|z_{n}-z\right|>\epsilon\right)$. If $z_{n} \xrightarrow{\mathbb{P}} z$, then by passing to the limit and noting that ϵ is arbitrary,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(z_{n} \leq \zeta\right)=\mathbb{P}(z \leq \zeta)
$$

That is, $F_{z_{n}}(\zeta) \rightarrow F_{z}(\zeta)$. The converse is not true in general, however.

Theorem 5.20 (Continuous Mapping Theorem)

Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a function continuous almost everywhere on \mathbb{R}, except for at most countably many points. If $z_{n} \xrightarrow{D} z$, then $g\left(z_{n}\right) \xrightarrow{D} g(z)$.

For example, $z_{n} \xrightarrow{D} \mathcal{N}(0,1)$ implies $z_{n}^{2} \xrightarrow{D} \chi^{2}(1)$.

Theorem 5.21

Let $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be two sequences of random vectors such that $y_{n}-z_{n} \xrightarrow{\mathbf{P}} 0$. If $z_{n} \xrightarrow{D} z$, then $y_{n} \xrightarrow{D} z$.

Theorem 5.22

If y_{n} converges in probability to a constant c and z_{n} converges in distribution to z, then $y_{n}+z_{n} \xrightarrow{D} c+z, y_{n} z_{n} \xrightarrow{D} c z$, and $z_{n} / y_{n} \xrightarrow{D} z / c$ if $c \neq 0$.

Non-Stochastic Order Notations

Order notations are used to describe the behavior of real sequences.

- b_{n} is (at most) of order c_{n}, denoted as $b_{n}=O\left(c_{n}\right)$, if there exists a $\Delta<\infty$ such that $\left|b_{n}\right| / c_{n} \leq \Delta$ for all sufficiently large n.
- b_{n} is of smaller order than c_{n}, denoted as $b_{n}=o\left(c_{n}\right)$, if $b_{n} / c_{n} \rightarrow 0$.
- An $O(1)$ sequence in bounded; an $o(1)$ sequence converges to zero. The product of $O(1)$ and $o(1)$ sequences is $o(1)$.

Theorem 5.23

(a) If $a_{n}=O\left(n^{r}\right)$ and $b_{n}=O\left(n^{s}\right)$, then $a_{n} b_{n}=O\left(n^{r+s}\right), a_{n}+b_{n}=O\left(n^{\max (r, s)}\right)$.
(b) If $a_{n}=o\left(n^{r}\right)$ and $b_{n}=o\left(n^{s}\right)$, then $a_{n} b_{n}=o\left(n^{r+s}\right), a_{n}+b_{n}=o\left(n^{\max (r, s)}\right)$.
(c) If $a_{n}=O\left(n^{r}\right)$ and $b_{n}=o\left(n^{s}\right)$, then $a_{n} b_{n}=o\left(n^{r+s}\right), a_{n}+b_{n}=O\left(n^{\max (r, s)}\right)$.

Stochastic Order Notations

The order notations defined earlier easily extend to describe the behavior of sequences of random variables.

- $\left\{z_{n}\right\}$ is $O_{\text {a.s. }}\left(c_{n}\right)$ (or $O\left(c_{n}\right)$ almost surely) if z_{n} / c_{n} is $O(1)$ a.s.
- $\left\{z_{n}\right\}$ is $O_{\mathbb{P}}\left(c_{n}\right)$ (or $O\left(c_{n}\right)$ in probability) if for every $\epsilon>0$, there is some Δ such that $\mathbb{P}\left(\left|z_{n}\right| / c_{n} \geq \Delta\right) \leq \epsilon$, for all n sufficiently large.
- Lemma 5.23 holds for stochastic order notations. For example, $y_{n}=O_{\mathbb{P}}(1)$ and $z_{n}=o_{\mathbb{P}}(1)$, then $y_{n} z_{n}$ is $o_{\mathbb{P}}(1)$.
- It is very restrictive to require a random variable being bounded almost surely, but a well defined random variable is typically bounded in probability, i.e., $O_{\mathbb{P}}(1)$.

Let $\left\{z_{n}\right\}$ be a sequence of random variables such that $z_{n} \xrightarrow{D} z$ and ζ be a continuity point of F_{z}. Then for any $\epsilon>0$, we can choose a sufficiently large ζ such that $\mathbb{P}(|z|>\zeta)<\epsilon / 2$. As $z_{n} \xrightarrow{D} z$, we can also choose n large enough such that

$$
\mathbb{P}\left(\left|z_{n}\right|>\zeta\right)-\mathbb{P}(|z|>\zeta)<\epsilon / 2
$$

which implies $\mathbb{P}\left(\left|z_{n}\right|>\zeta\right)<\epsilon$. We have proved:

Lemma 5.24

Let $\left\{z_{n}\right\}$ be a sequence of random variables such that $z_{n} \xrightarrow{D} z$. Then $z_{n}=O_{\mathbb{P}}(1)$.

Law of Large Numbers

- When a law of large numbers holds almost surely, it is a strong law of large numbers (SLLN); when a law of large numbers holds in probability, it is a weak law of large numbers (WLLN).
- A sequence of random variables obeys a LLN when its sample average essentially follows its mean behavior; random irregularities (deviations from the mean) are "wiped out" in the limit by averaging.
- Kolmogorov's SLLN : Let $\left\{z_{t}\right\}$ be a sequence of i.i.d. random variables with mean μ_{0}. Then, $T^{-1} \sum_{t=1}^{T} z_{t} \xrightarrow{\text { a.s. }} \mu_{0}$.
- Note that i.i.d. random variables need not obey Kolmogorov's SLLN if they do not have a finite mean, e.g., i.i.d. Cauchy random variables.

Theorem 5.26 (Markov's SLLN)

Let $\left\{z_{t}\right\}$ be a sequence of independent random variables such that for some $\delta>0, \mathbb{E}\left|z_{t}\right|^{1+\delta}$ is bounded for all t. Then,

$$
\frac{1}{T} \sum_{t=1}^{T}\left[z_{t}-\mathbb{E}\left(z_{t}\right)\right] \xrightarrow{\text { a.s. }} 0 .
$$

- Note that here z_{t} need not have a common mean, and the average of their means need not converge.
- Compared with Kolmogorov's SLLN, Markov's SLLN requires a stronger moment condition but not identical distribution.
- A LLN usually obtains by regulating the moments of and dependence across random variables.

Examples

Example 5.27 Suppose that $y_{t}=\alpha_{o} y_{t-1}+u_{t}$ with $\left|\alpha_{o}\right|<1$. Then, $\operatorname{var}\left(y_{t}\right)=\sigma_{u}^{2} /\left(1-\alpha_{o}^{2}\right)$, and $\operatorname{cov}\left(y_{t}, y_{t-j}\right)=\alpha_{o}^{j} \frac{\sigma_{u}^{2}}{1-\alpha_{o}^{2}}$. Thus,

$$
\begin{aligned}
\operatorname{var}\left(\sum_{t=1}^{T} y_{t}\right) & =\sum_{t=1}^{T} \operatorname{var}\left(y_{t}\right)+2 \sum_{\tau=1}^{T-1}(T-\tau) \operatorname{cov}\left(y_{t}, y_{t-\tau}\right) \\
& \leq \sum_{t=1}^{T} \operatorname{var}\left(y_{t}\right)+2 T \sum_{\tau=1}^{T-1}\left|\operatorname{cov}\left(y_{t}, y_{t-\tau}\right)\right|=O(T)
\end{aligned}
$$

so that $\operatorname{var}\left(T^{-1} \sum_{t=1}^{T} y_{t}\right)=O\left(T^{-1}\right)$. As $\mathbb{E}\left(T^{-1} \sum_{t=1}^{T} y_{t}\right)=0$,

$$
\frac{1}{T} \sum_{t=1}^{T} y_{t} \xrightarrow{\mathbb{P}} 0 .
$$

by Lemma 5.16 . That is, $\left\{y_{t}\right\}$ obeys a WLLN.

Lemma 5.28

Let $y_{t}=\sum_{i=0}^{\infty} \pi_{i} u_{t-i}$, where u_{t} are i.i.d. random variables with mean zero and variance σ_{u}^{2}. If $\sum_{i=-\infty}^{\infty}\left|\pi_{i}\right|<\infty$, then $T^{-1} \sum_{t=1}^{T} y_{t} \xrightarrow{\text { a.s. }} 0$.

- In Example 5.27, $y_{t}=\sum_{i=0}^{\infty} \alpha_{o}^{i} u_{t-i}$ with $\left|\alpha_{o}\right|<1$, so that $\sum_{i=0}^{\infty}\left|\alpha_{o}^{i}\right|<\infty$
- Lemma 5.28 is quite general and applicable to processes that can be expressed as an MA process with absolutely summable weights, e.g., weakly stationary $\operatorname{AR}(p)$ processes.
- For random variables with strong correlations over time, the variation of their partial sums may grow too rapidly and cannot be eliminated by simple averaging.

Example 5.29: For the sequences $\{t\}$ and $\left\{t^{2}\right\}$,

$$
\sum_{t=1}^{T} t=T(T+1) / 2, \quad \sum_{t=1}^{T} t^{2}=T(T+1)(2 T+1) / 6
$$

Hence, $T^{-1} \sum_{t=1}^{T} t$ and $T^{-1} \sum_{t=1}^{T} t^{2}$ both diverge.
Example 5.30: u_{t} are i.i.d. with mean zero and variance σ_{u}^{2}. Consider now $\left\{t u_{t}\right\}$, which does not have bounded $(1+\delta)$ th moment and does not obey Markov's SLLN. Moreover,

$$
\operatorname{var}\left(\sum_{t=1}^{T} t u_{t}\right)=\sum_{t=1}^{T} t^{2} \operatorname{var}\left(u_{t}\right)=\sigma_{u}^{2} \frac{T(T+1)(2 T+1)}{6}
$$

so that $\sum_{t=1}^{T} t u_{t}=O_{\mathbb{P}}\left(T^{3 / 2}\right)$. It follows that $T^{-1} \sum_{t=1}^{T} t u_{t}=O_{\mathbb{P}}\left(T^{1 / 2}\right)$. That is, $\left\{t u_{t}\right\}$ does not obey a WLLN.

Example 5.31: y_{t} is a random walk: $y_{t}=y_{t-1}+u_{t}$. For $s<t$,

$$
y_{t}=y_{s}+\sum_{i=s+1}^{t} u_{i}=y_{s}+v_{t-s},
$$

where v_{t-s} is independent of y_{s} and $\operatorname{cov}\left(y_{t}, y_{s}\right)=\mathbb{E}\left(y_{s}^{2}\right)=s \sigma_{u}^{2}$. Thus,

$$
\operatorname{var}\left(\sum_{t=1}^{T} y_{t}\right)=\sum_{t=1}^{T} \operatorname{var}\left(y_{t}\right)+2 \sum_{\tau=1}^{T-1} \sum_{t=\tau+1}^{T} \operatorname{cov}\left(y_{t}, y_{t-\tau}\right)=O\left(T^{3}\right)
$$

for $\sum_{t=1}^{T} \operatorname{var}\left(y_{t}\right)=\sum_{t=1}^{T} t \sigma_{u}^{2}=O\left(T^{2}\right)$ and

$$
2 \sum_{\tau=1}^{T-1} \sum_{t=\tau+1}^{T} \operatorname{cov}\left(y_{t}, y_{t-\tau}\right)=2 \sum_{\tau=1}^{T-1} \sum_{t=\tau+1}^{T}(t-\tau) \sigma_{u}^{2}=O\left(T^{3}\right)
$$

Then, $\sum_{t=1}^{T} y_{t}=O_{\mathbf{P}}\left(T^{3 / 2}\right)$ and $T^{-1} \sum_{t=1}^{T} y_{t}$ diverges in probability.

Example 5.32: y_{t} is the random walk in Example 5.31. Then, $\mathbb{E}\left(y_{t-1} u_{t}\right)=0, \operatorname{var}\left(y_{t-1} u_{t}\right)=\mathbb{E}\left(y_{t-1}^{2}\right) \mathbb{E}\left(u_{t}^{2}\right)=(t-1) \sigma_{u}^{4}$, and for $s<t$,

$$
\operatorname{cov}\left(y_{t-1} u_{t}, y_{s-1} u_{s}\right)=\mathbb{E}\left(y_{t-1} y_{s-1} u_{s}\right) \mathbb{E}\left(u_{t}\right)=0 .
$$

This yields

$$
\operatorname{var}\left(\sum_{t=1}^{T} y_{t-1} u_{t}\right)=\sum_{t=1}^{T} \operatorname{var}\left(y_{t-1} u_{t}\right)=\sum_{t=1}^{T}(t-1) \sigma_{u}^{4}=O\left(T^{2}\right)
$$

and $\sum_{t=1}^{T} y_{t-1} u_{t}=O_{\mathbf{P}}(T)$. As $\operatorname{var}\left(T^{-1} \sum_{t=1}^{T} y_{t-1} u_{t}\right)$ converges to $\sigma_{u}^{4} / 2$, rather than $0,\left\{y_{t-1} u_{t}\right\}$ does not obey a WLLN, even though its partial sums are $O_{\mathbf{P}}(T)$.

Central Limit Theorem (CLT)

Lemma 5.35 (Lindeberg-Lévy's CLT)

Let $\left\{z_{t}\right\}$ be a sequence of i.i.d. random variables with mean μ_{o} and variance $\sigma_{o}^{2}>0$. Then, $\sqrt{T}\left(\bar{z}_{T}-\mu_{o}\right) / \sigma_{o} \xrightarrow{D} \mathcal{N}(0,1)$.

- i.i.d. random variables need not obey this CLT if they do not have a finite variance, e.g., $t(2)$ r.v.
- Note that \bar{z}_{T} converges to μ_{o} in probability, and its variance σ_{o}^{2} / T vanishes when T tends to infinity. A normalizing factor $T^{1 / 2}$ suffices to prevent a degenerate distribution in the limit.
- When $\left\{z_{t}\right\}$ obeys a CLT, \bar{z}_{T} is said to converge to μ_{o} at the rate $T^{-1 / 2}$, and \bar{z}_{T} is understood as a root- T consistent estimator.

Lemma 5.36 (Liapunov's CLT)

Let $\left\{z_{T t}\right\}$ be a triangular array of independent random variables with mean $\mu_{T t}$ and variance $\sigma_{T t}^{2}>0$ such that $\bar{\sigma}_{T}^{2}=\frac{1}{T} \sum_{t=1}^{T} \sigma_{T t}^{2} \rightarrow \sigma_{o}^{2}>0$. If for some $\delta>0, \mathbb{E}\left|z_{T t}\right|^{2+\delta}$ are bounded, then $\sqrt{T}\left(\bar{z}_{T}-\bar{\mu}_{T}\right) / \sigma_{o} \xrightarrow{D} \mathcal{N}(0,1)$.

- A CLT usually requires stronger conditions on the moment of and dependence across random variables than those needed to ensure a LLN.
- Moreover, every random variable must also be asymptotically negligible, in the sense that no random variable is influential in affecting the partial sums.

Examples

Example 5.37: $\left\{u_{t}\right\}$ is a sequence of independent random variables with mean zero, variance σ_{u}^{2}, and bounded $(2+\delta)$ th moment. we know $\operatorname{var}\left(\sum_{t=1}^{T} t u_{t}\right)$ is $O\left(T^{3}\right)$, which implies that variance of $T^{-1 / 2} \sum_{t=1}^{T} t u_{t}$ is diverging at the rate $O\left(T^{2}\right)$. On the other hand, observe that

$$
\operatorname{var}\left(\frac{1}{T^{1 / 2}} \sum_{t=1}^{T} \frac{t}{T} u_{t}\right)=\frac{T(T+1)(2 T+1)}{6 T^{3}} \sigma_{u}^{2} \rightarrow \frac{\sigma_{u}^{2}}{3}
$$

It follows that

$$
\frac{\sqrt{3}}{T^{1 / 2} \sigma_{u}} \sum_{t=1}^{T} \frac{t}{T} u_{t} \xrightarrow{D} \mathcal{N}(0,1) .
$$

These results show that $\left\{(t / T) u_{t}\right\}$ obeys a CLT, whereas $\left\{t u_{t}\right\}$ does not.

Example 5.38: y_{t} is a random walk: $y_{t}=y_{t-1}+u_{t}$, where u_{t} are i.i.d. with mean zero and variance σ_{u}^{2}. We know y_{t} do not obey a LLN and hence do not obey a CLT.

CLT for Triangular Array

$\left\{z_{T t}\right\}$ is a triangular array of random variables and obeys a CLT if

$$
\frac{1}{\sigma_{o} \sqrt{T}} \sum_{t=1}^{T}\left[z_{T t}-\mathbb{E}\left(z_{T t}\right)\right]=\frac{\sqrt{T}\left(\bar{z}_{T}-\bar{\mu}_{T}\right)}{\sigma_{o}} \xrightarrow{D} \mathcal{N}(0,1),
$$

where $\bar{z}_{T}=T^{-1} \sum_{t=1}^{T} z_{T t}, \bar{\mu}_{T}=\mathbb{E}\left(\bar{z}_{T}\right)$, and

$$
\sigma_{T}^{2}=\operatorname{var}\left(T^{-1 / 2} \sum_{t=1}^{T} z_{T t}\right) \rightarrow \sigma_{o}^{2}>0
$$

- Consider an array of square integrable random vectors $\mathbf{z}_{T t}$ in \mathbb{R}^{d}. Let $\overline{\mathbf{z}}_{T}$ denote the average of $\mathbf{z}_{T t}, \overline{\boldsymbol{\mu}}_{T}=\mathbb{E}\left(\overline{\mathbf{z}}_{T}\right)$, and

$$
\boldsymbol{\Sigma}_{T}=\operatorname{var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \mathbf{z}_{T t}\right) \rightarrow \boldsymbol{\Sigma}_{o}
$$

a positive definite matrix. Using the Cramér-Wold device, $\left\{\mathbf{z}_{T t}\right\}$ is said to obey a multivariate CLT, in the sense that

$$
\boldsymbol{\Sigma}_{o}^{-1 / 2} \frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left[\mathbf{z}_{T t}-\mathbb{E}\left(\mathbf{z}_{T t}\right)\right]=\boldsymbol{\Sigma}_{o}^{-1 / 2} \sqrt{T}\left(\overline{\mathbf{z}}_{T}-\overline{\boldsymbol{\mu}}_{T}\right) \xrightarrow{D} \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)
$$

if $\left\{\boldsymbol{\alpha}^{\prime} \mathbf{z}_{T t}\right\}$ obeys a CLT, for any $\boldsymbol{\alpha} \in \mathbb{R}^{\boldsymbol{d}}$ such that $\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}=1$.

Stochastic Processes

- A d-dimensional stochastic process with the index set \mathcal{T} is a measurable mapping $\mathbf{z}: \Omega \mapsto\left(\mathbb{R}^{d}\right)^{\mathcal{T}}$ such that

$$
\mathbf{z}(\omega)=\left\{\mathbf{z}_{t}(\omega), t \in \mathcal{T}\right\}
$$

For each $t \in \mathcal{T}, \mathbf{z}_{t}(\cdot)$ is a \mathbb{R}^{d}-valued r.v.; for each $\omega, \mathbf{z}(\omega)$ is a sample path (realization) of \mathbf{z}, a \mathbb{R}^{d}-valued function on \mathcal{T}.

- The finite-dimensional distributions of $\{\mathbf{z}(t, \cdot), t \in \mathcal{T}\}$ is

$$
\mathbb{P}\left(\mathbf{z}_{t_{1}} \leq \mathbf{a}_{1}, \ldots, \mathbf{z}_{t_{n}} \leq \mathbf{a}_{n}\right)=F_{t_{1}, \ldots, t_{n}}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)
$$

- \mathbf{z} is stationary if $F_{t_{1}, \ldots, t_{n}}$ are invariant under index displacement.
- \mathbf{z} is Gaussian if $F_{t_{1}, \ldots, t_{n}}$ are all (multivariate) normal.

Brownian motion

The process $\{w(t), t \in[0, \infty)\}$ is the standard Wiener process (standard Brownian motion) if it has continuous sample paths almost surely and satisfies:
(1) $\mathbb{P}(w(0)=0)=1$.
(2) For $0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{k}$,

$$
\mathbb{P}\left(w\left(t_{i}\right)-w\left(t_{i-1}\right) \in B_{i}, i \leq k\right)=\prod_{i \leq k} \mathbb{P}\left(w\left(t_{i}\right)-w\left(t_{i-1}\right) \in B_{i}\right)
$$

where B_{i} are Borel sets.
(3) For $0 \leq s<t, w(t)-w(s) \sim \mathcal{N}(0, t-s)$.

Note: w here has independent and Gaussian increments.

- $w(t) \sim \mathcal{N}(0, t)$ such that for $r \leq t$,

$$
\operatorname{cov}(w(r), w(t))=\mathbb{E}[w(r)(w(t)-w(r))]+\mathbb{E}\left[w(r)^{2}\right]=r .
$$

- The sample paths of w are a.s. continuous but highly irregular (nowhere differentiable).
To see this, note $w_{c}(t)=w\left(c^{2} t\right) / c$ for $c>0$ is also a standard Wiener process. (Why?) Then, $w_{c}(1 / c)=w(c) / c$. For a large c such that $w(c) / c>1, \frac{w_{c}(1 / c)}{1 / c}=w(c)>c$. That is, the sample path of w_{c} has a slope larger than c on a very small interval $(0,1 / c)$.
- The difference quotient:

$$
[w(t+h)-w(t)] / h \sim \mathcal{N}(0,1 /|h|)
$$

can not converge to a finite limit (as $h \rightarrow 0$) with a positive prob.

The d-dimensional, standard Wiener process \mathbf{w} consists of d mutually independent, standard Wiener processes, so that for $s<t$,
$\mathbf{w}(t)-\mathbf{w}(s) \sim \mathcal{N}\left(\mathbf{0},(t-s) \mathbf{I}_{d}\right)$.

Lemma 5.39

Let \mathbf{w} be the d-dimensional, standard Wiener process.
(1) $\mathbf{w}(t) \sim \mathcal{N}\left(\mathbf{0}, t \mathbf{I}_{d}\right)$.
(2) $\operatorname{cov}(\mathbf{w}(r), \mathbf{w}(t))=\min (r, t) \mathbf{I}_{d}$.

The Brownian bridge \mathbf{w}^{0} on $[0,1]$ is $\mathbf{w}^{0}(t)=\mathbf{w}(t)-t \mathbf{w}(1)$. Clearly, $\mathbb{E}\left[\mathbf{w}^{0}(t)\right]=\mathbf{0}$, and for $r<t$,

$$
\operatorname{cov}\left(\mathbf{w}^{0}(r), \mathbf{w}^{0}(t)\right)=\operatorname{cov}(\mathbf{w}(r)-r \mathbf{w}(1), \mathbf{w}(t)-t \mathbf{w}(1))=r(1-t) \mathbf{I}_{d}
$$

Weak Convergence

\mathbb{P}_{n} converges weakly to \mathbb{P}, denoted as $\mathbb{P}_{n} \Rightarrow \mathbb{P}$, if for every bounded, continuous real function f on S,

$$
\int f(s) d \mathbb{P}_{n}(s) \rightarrow \int f(s) \mathrm{d} \mathbb{P}(s)
$$

where $\left\{\mathbb{P}_{n}\right\}$ and \mathbb{P} are probability measures on (S, \mathcal{S}).

- When \mathbf{z}_{n} and \mathbf{z} are all \mathbb{R}^{d}-valued random variables, $\mathbb{P}_{n} \Rightarrow \mathbb{P}$ reduces to the usual notion of convergence in distribution: $\mathbf{z}_{n} \xrightarrow{D} \mathbf{z}$.
- When \mathbf{z}_{n} and \mathbf{z} are d-dimensional stochastic processes with the distributions induced by \mathbb{P}_{n} and $\mathbb{P}, \mathbf{z}_{n} \xrightarrow{D} \mathbf{z}$, also denoted as $\mathbf{z}_{n} \Rightarrow \mathbf{z}$, implies that all the finite-dimensional distributions of \mathbf{z}_{n} converge to the corresponding distributions of \mathbf{z}.

Continuous Mapping Theorem

Lemma 5.40 (Continuous Mapping Theorem)

Let $g: \mathbb{R}^{d} \mapsto \mathbb{R}$ be a function continuous almost everywhere on \mathbb{R}^{d}, except for at most countably many points. If $\mathbf{z}_{n} \Rightarrow \mathbf{z}$, then $g\left(\mathbf{z}_{n}\right) \Rightarrow g(\mathbf{z})$.

Proof: Let S and S^{\prime} be two metric spaces with Borel σ-algebras \mathcal{S} and \mathcal{S}^{\prime} and $g: S \mapsto S^{\prime}$ be a measurable mapping. For \mathbb{P} on (S, \mathcal{S}), define \mathbb{P}^{*} on $\left(S^{\prime}, \mathcal{S}^{\prime}\right)$ as

$$
\mathbb{P}^{*}\left(A^{\prime}\right)=\mathbb{P}\left(g^{-1}\left(A^{\prime}\right)\right), \quad A^{\prime} \in \mathcal{S}^{\prime}
$$

For every bounded, continuous f on $S^{\prime}, f \circ g$ is also bounded and continuous on S. $\mathbb{P}_{n} \Rightarrow \mathbb{P}$ now implies that

$$
\int f \circ g(s) d \mathbb{P}_{n}(s) \rightarrow \int f \circ g(s) d \mathbb{P}(s)
$$

which is equivalent to $\int f(a) d \mathbb{P}_{n}^{*}(a) \rightarrow \int f(a) d \mathbb{P}^{*}(a)$, proving $\mathbb{P}_{n}^{*} \Rightarrow \mathbb{P}^{*}$.

Functional Central Limit Theorem (FCLT)

- ζ_{i} are i.i.d. with mean zero and variance σ^{2}. Let $s_{n}=\zeta_{1}+\cdots+\zeta_{n}$ and $z_{n}(i / n)=(\sigma \sqrt{n})^{-1} s_{i}$.
- For $t \in[(i-1) / n, i / n)$, the constant interpolations of $z_{n}(i / n)$ is

$$
z_{n}(t)=z_{n}((i-1) / n)=\frac{1}{\sigma \sqrt{n}} s_{[n t]},
$$

where $[n t]$ is the the largest integer less than or equal to $n t$.

- From Lindeberg-Lévy's CLT,

$$
\frac{1}{\sigma \sqrt{n}} S_{[n t]}=\left(\frac{[n t]}{n}\right)^{1 / 2} \frac{1}{\sigma \sqrt{[n t]}} S_{[n t]} \xrightarrow{D} \sqrt{t} \mathcal{N}(0,1),
$$

which is just $\mathcal{N}(0, t)$, the distribution of $w(t)$.

- For $r<t$, we have

$$
\left(z_{n}(r), z_{n}(t)-z_{n}(r)\right) \xrightarrow{D}(w(r), w(t)-w(r)),
$$

and hence $\left(z_{n}(r), z_{n}(t)\right) \xrightarrow{D}(w(r), w(t))$. This is easily extended to establish convergence of any finite-dimensional distributions and leads to the functional central limit theorem.

Lemma 5.41 (Donsker)

Let ζ_{t} be i.i.d. with mean μ_{o} and variance $\sigma_{o}^{2}>0$ and

$$
z_{T}(r)=\frac{1}{\sigma_{o} \sqrt{T}} \sum_{t=1}^{[T r]}\left(\zeta_{t}-\mu_{o}\right), \quad r \in[0,1] .
$$

Then, $z_{T} \Rightarrow w$ as $T \rightarrow \infty$.

- Let ζ_{t} be r.v.s with mean μ_{t} and variance $\sigma_{t}^{2}>0$. Define long-run variance of ζ_{t} as

$$
\sigma_{*}^{2}=\lim _{T \rightarrow \infty} \operatorname{var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \zeta_{t}\right)
$$

$\left\{\zeta_{t}\right\}$ is said to obey an FCLT if $z_{T} \Rightarrow w$ as $T \rightarrow \infty$, where

$$
z_{T}(r)=\frac{1}{\sigma_{*} \sqrt{T}} \sum_{t=1}^{[T r]}\left(\zeta_{t}-\mu_{t}\right), \quad r \in[0,1] .
$$

- In the multivariate context, FCLT is $\mathbf{z}_{T} \Rightarrow \mathbf{w}$ as $T \rightarrow \infty$, where

$$
\mathbf{z}_{T}(r)=\frac{1}{\sqrt{T}} \boldsymbol{\Sigma}_{*}^{-1 / 2} \sum_{t=1}^{[T r]}\left(\boldsymbol{\zeta}_{t}-\boldsymbol{\mu}_{t}\right), \quad r \in[0,1]
$$

\mathbf{w} is the d-dimensional, standard Wiener process, and

$$
\boldsymbol{\Sigma}_{*}=\lim _{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\left(\sum_{t=1}^{T}\left(\zeta_{t}-\boldsymbol{\mu}_{t}\right)\right)\left(\sum_{t=1}^{T}\left(\zeta_{t}-\boldsymbol{\mu}_{t}\right)\right)^{\prime}\right]
$$

Example 5.43

- $y_{t}=y_{t-1}+u_{t}, t=1,2, \ldots$, with $y_{0}=0$, where u_{t} are i.i.d. with mean zero and variance σ_{u}^{2}.
- By Donsker's FCLT, the partial sum $y_{[T r]}=\sum_{t=1}^{[T r]} u_{t}$ is such that

$$
\frac{1}{T^{3 / 2}} \sum_{t=1}^{T} y_{t}=\sigma_{u} \sum_{t=1}^{T} \int_{(t-1) / T}^{t / T} \frac{1}{\sqrt{T} \sigma_{u}} y_{[T r]} \mathrm{d} r \Rightarrow \sigma_{u} \int_{0}^{1} w(r) \mathrm{d} r
$$

- This result also verifies that $\sum_{t=1}^{T} y_{t}$ is $O_{\mathbf{P}}\left(T^{3 / 2}\right)$. Similarly,

$$
\frac{1}{T^{2}} \sum_{t=1}^{T} y_{t}^{2}=\frac{1}{T} \sum_{t=1}^{T}\left(\frac{y_{t}}{\sqrt{T}}\right)^{2} \Rightarrow \sigma_{u}^{2} \int_{0}^{1} w(r)^{2} \mathrm{~d} r
$$

so that $\sum_{t=1}^{T} y_{t}^{2}$ is $O_{\mathbb{P}}\left(T^{2}\right)$.

