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Probability Space and σ-Algebra

A probability space is a triplet (Ω,F , IP), where

1 Ω is the outcome space, whose elements ω are outcomes of the random

experiment,

2 F is a a σ-algebra, a collection of subsets of Ω,

3 IP is a a probability measure assigned to the elements in F .

F is a σ-algebra if

1 Ω ∈ F ,

2 if A ∈ F , then Ac ∈ F ,

3 if A1,A2, · · · ∈ F , then
⋃∞

n=1 An ∈ F .

By (2), Ωc = ∅ ∈ F . From de Mongan’s law,( ∞⋃
n=1

An

)c

=
∞⋂

n=1

Ac
n ∈ F .
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Probability Measure

IP : F 7→ [0, 1] is a real-valued set function such that

1 IP(Ω) = 1,

2 IP(A) ≥ 0 for all A ∈ F .

3 if A1,A2, . . . ∈ F are disjoint, then IP(
⋃∞

n=1 An) =
∑∞

n=1 IP(An).

IP(∅) = 0, IP(Ac) = 1− IP(A), IP(A) ≤ IP(B) if A ⊆ B, and

IP(A ∪ B) = IP(A) + IP(B)− IP(A ∩ B).

If {An} is an increasing (decreasing) sequence in F with the limiting

set A, then limn→∞ IP(An) = IP(A).
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Borel Field

Let C be a collection of subsets of Ω. The σ-algebra generated by C,

σ(C), is the intersection of all σ-algebras that contain C and hence

the smallest σ-algebra containing C.

When Ω = R, the Borel field, B, is the σ-algebra generated by all

open intervals (a, b) in R.

Note that (a, b), [a, b], (a, b], and (−∞, b] can be obtained from each

other by taking complement, union and/or intersection. For example,

(a, b] =
∞⋂

n=1

(
a, b +

1

n

)
, (a, b) =

∞⋃
n=1

(
a, b − 1

n

]
.

Thus, the collection all open intervals (closed intervals, half-open

intervals or half lines) generates the same Borel field.
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The Borel field on Rd , Bd , is generated by all open hypercubes:

(a1, b1)× (a2, b2)× · · · × (ad , bd).

Bd can be generated by all closed hypercubes:

[a1, b1]× [a2, b2]× · · · × [ad , bd ],

or by

(−∞, b1]× (−∞, b2]× · · · × (−∞, bd ].

The sets that generate the Borel field Bd are all Borel sets.
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Random Variable

A random variable z defined on (Ω,F , IP) is a function z : Ω 7→ R
such that for every B in the Borel field B, its inverse image is in F :

z−1(B) = {ω : z(ω) ∈ B} ∈ F .

That is, z is a F/B-measurable (or simply F-measurable) function.

Given ω, the resulting value z(ω) is known as a realization of z .

A Rd valued random variable (random vector) z defined on (Ω,F , IP)

is: z : Ω 7→ Rd such that for every B ∈ Bd ,

z−1(B) = {ω : z(ω) ∈ B} ∈ F ;

i.e., z is a F/Bd -measurable function.
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Borel Measurable

All the inverse images of random vector z, z−1(B), form a σ-algebra,

denoted as σ(z).

It is known as the σ-algebra generated by z, or the information set

associated with z.

It is the smallest σ-algebra in F such that z is measurable.

A function g : R 7→ R is B-measurable or Borel measurable if

{ζ ∈ R : g(ζ) ≤ b} ∈ B.

For random variable z defined on (Ω,F , IP) and Borel measurable

function g(·), g(z) is a random variable defined on (Ω,F , IP). The

same conclusion holds for d-dimensional random vector z and

Bd -measurable function g(·).
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Distribution Function

The joint distribution function of z is a non-decreasing,

right-continuous function Fz such that for ζ = (ζ1, . . . , ζd)′ ∈ Rd ,

Fz(ζ) = IP{ω ∈ Ω: z1(ω) ≤ ζ1, . . . , zd(ω) ≤ ζd},

with

lim
ζ1→−∞, ..., ζd→−∞

Fz(ζ) = 0, lim
ζ1→∞, ..., ζd→∞

Fz(ζ) = 1.

The marginal distribution function of the i th component of z is

Fzi
(ζi ) = IP{ω ∈ Ω: zi (ω) ≤ ζi} = Fz(∞, . . . ,∞, ζi ,∞, . . . ,∞).
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Independence

y and z are (pairwise) independent iff for any Borel sets B1 and B2,

IP(y ∈ B1 and z ∈ B2) = IP(y ∈ B1) IP(z ∈ B2).

A sequence of random variables {zi} is totally independent if

IP
( ⋂

all i

{zi ∈ Bi}
)

=
∏
all i

IP(zi ∈ Bi ).

Lemma 5.1

Let {zi} be a sequence of independent random variables and hi ,

i = 1, 2, . . . be Borel-measurable functions. Then {hi (zi )} is also a

sequence of independent random variables.
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Expectation

The expectation of Zi is the Lebesgue integral of zi wrt to IP:

IE(zi ) =

∫
Ω

zi (ω) d IP(ω).

In terms of its distribution function,

IE(zi ) =

∫
Rd

ζi dFz(ζ) =

∫
R

ζi dFzi
(ζi ).

For Borel measurable function g(·) of z,

IE[g(z)] =

∫
Ω

g(z(ω)) d IP(ω) =

∫
Rd

g(ζ) dFz(ζ).

For example, the covariance matrix of z IE(zz′).
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A function g is convex on a set S if for any a ∈ [0, 1] and any x , y in S ,

g (ax + (1− a)y) ≤ ag(x) + (1− a)g(y);

g is concave on S if the inequality above is reversed.

Lemma 5.2 (Jensen)

Let g be a convex function on the support of z . For an integrable random

variable z such that g(z) is integrable, g(IE(z)) ≤ IE[g(z)]; the inequality

reverses if g is concave.
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Lp-Norm

For random variable z with finite p th moment, its Lp-norm is:

‖z‖p = [IE(zp)]1/p.

The inner product of square integrable random variables zi and zj is:

〈zi , zj〉 = IE(zizj).

The L2-norm of zi can be obtained as ‖zi‖2 = 〈zi , zi 〉1/2.

For any c > 0 and p > 0, note that

cp IP(|z | ≥ c) = cp

∫
1{ζ:|ζ|≥c}dFz(ζ) ≤

∫
{ζ:|ζ|≥c}

|ζ|pdFz(ζ) ≤ IE |z |p,

where 1A is the indicator function of the event A.
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Inequalities

Lemma 5.3 (Markov)

Let z be a random variable with finite p th moment. Then,

IP(|z | ≥ c) ≤ IE |z |p

cp
,

where c is a positive real number.

For p = 2, Markov’s inequality is also known as Chebyshev’s

inequality.

Markov’s inequality is trivial if c is small such that IE |z |p/cp > 1.

When c becomes large, the probability that z assumes very extreme

values will be vanishing at the rate c−p.
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Lemma 5.4 (Hölder)

Let y be a random variable with finite p th moment (p > 1) and z a

random variable with finite qth moment (q = p/(p − 1)). Then,

IE |yz | ≤ ‖y‖p ‖z‖q.

Since | IE(yz)| ≤ IE |yz |, we also have:

Lemma 5.5 (Cauchy-Schwatz)

Let y and z be two square integrable random variables. Then,

| IE(yz)| ≤ ‖y‖2 ‖z‖2.
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Let y = 1 and x = zp. For q > p and r = q/p, by Hölder’s inequality,

IE |zp| ≤ ‖x‖r ‖y‖r/(r−1) = [IE(zpr )]1/r = [IE(zq)]p/q.

Lemma 5.6 (Liapunov)

Let z be a random variable with finite q th moment. Then for p < q,

‖z‖p ≤ ‖z‖q.

Lemma 5.7 (Minkowski)

Let zi , i = 1, . . . , n, be random variables with finite p th moment (p ≥ 1).

Then, ‖
∑n

i=1 zi‖p ≤
∑n

i=1 ‖zi‖p.

When n = 2, this is just the triangle inequality for Lp-norms.
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Conditional Distributions

Given A,B ∈ F , suppose we know B has occurred. Given the

outcome space is restricted to B, the likelihood of A is characterized

by the conditional probability: IP(A | B) = IP(A ∩ B)/ IP(B).

The conditional density function of z given y = η is

fz|y(ζ | y = η) =
fz,y(ζ, η)

fy(η)
.

fz|y(ζ | y = η) is clearly non-negative. Also∫
Rd

fz|y(ζ | y = η)dζ =
1

fy(η)

∫
Rd

fz,y(ζ, η)dζ =
1

fy(η)
fy(η) = 1.

That is, fz|y(ζ | y = η) is a legitimate density function.
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Given the conditional density function fz|y, for A ∈ Bd ,

IP(z ∈ A | y = η) =

∫
A

fz|y(ζ | y = η)dζ.

This probability is defined even when IP(y = η) is zero.

When A = (−∞, ζ1]× · · · × (−∞, ζd ], the conditional distribution

function is

Fz|y(ζ | y = η) = IP(z1 ≤ ζ1, . . . , zd ≤ ζd | y = η).

When z and y are independent, the conditional density (distribution)

reduces to the unconditional density (distribution).
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Let G be a sub-σ-algebra of F , the conditional expectation IE(z | G)

is the integrable and G-measurable random variable satisfying∫
G

IE(z | G) d IP =

∫
G

z d IP, ∀G ∈ G.

Suppose that G is the trivial σ-algebra {Ω, ∅}, then IE(z | G) must be

a constant c , so that

IE(z) =

∫
Ω

z d IP =

∫
Ω

c d IP = c.

Consider G = σ(y), the σ-algebra generated by y.

IE(z | y) = IE[z | σ(y)],

which is interpreted as the prediction of z given all the information

associated with y.
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By definition,

IE[IE(z | G)] =

∫
Ω

IE(z | G) d IP =

∫
Ω

z d IP = IE(z);

That is, only a smaller σ-algebra matters in conditional expectation.

Lemma 5.9 (Law of Iterated Expectations)

Let G and H be two sub-σ-algebras of F such that G ⊆ H. Then for the

integrable random vector z,

IE[IE(z | H) | G] = IE[IE(z | G) | H] = IE(z | G).

If z is G-measurable, then IE[g(z)x | G] = g(z) IE(x | G) with prob. 1.
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Lemma 5.11

Let z be a square integrable random variable. Then

IE[z − IE(z | G)]2 ≤ IE(z − z̃)2,

for any G-measurable random variable z̃ .

Proof: For any square integrable, G-measurable random variable z̃ ,

IE
(
[z − IE(z | G)]z̃

)
= IE

(
[IE(z | G)− IE(z | G)]z̃

)
= 0.

It follows that

IE(z − z̃)2 = IE[z − IE(z | G) + IE(z | G)− z̃ ]2

= IE[z − IE(z | G)]2 + IE[IE(z | G)− z̃ ]2

≥ IE[z − IE(z | G)]2. 2
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The conditional variance-covariance matrix of z given y is

var(z | y) = IE
(
[z− IE(z | y)][z− IE(z | y)]′ | y

)
= IE(zz′ | y)− IE(z | y) IE(z | y)′,

which leads to decomposition of analysis of variance:

var(z) = IE[var(z | y)] + var
(
IE(z | y)

)
.

Example 5.12: Suppose that[
y

x

]
∼ N

([
µy

µx

]
,

[
Σyy Σ′

xy

Σxy Σxx

])
.

Then,

IE(y | x) = µy −Σ′
xyΣ

−1
xx (x− µx),

var(y | x) = var(y)− var
(
IE(y | x)

)
= Σyy −Σ′

xyΣ
−1
xx Σxy.
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Almost Sure Convergence

A sequence of random variables, {zn(·)}n=1,2,..., is such that for a given ω,

zn(ω) is a realization of the random element ω with index n, and that for a

given n, zn(·) is a random variable.

Almost Sure Convergence

Suppose {zn} and z are all defined on (Ω,F , IP). {zn} is said to converge

to z almost surely if, and only if,

IP(ω : zn(ω) → z(ω) as n →∞) = 1,

denoted as zn
a.s.−→ z or zn → z a.s. (with prob. 1).
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Lemma 5.13

Let g : R 7→ R be a function continuous on Sg ⊆ R. If zn
a.s.−→ z , where z

is a random variable such that IP(z ∈ Sg ) = 1, then g(zn)
a.s.−→ g(z).

Proof: Let Ω0 = {ω : zn(ω) → z(ω)} and Ω1 = {ω : z(ω) ∈ Sg}. Thus,

for ω ∈ (Ω0 ∩Ω1), continuity of g ensures that g(zn(ω)) → g(z(ω)). Note

that

(Ω0 ∩ Ω1)
c = Ωc

0 ∪ Ωc
1,

which has probability zero because IP(Ωc
0) = IP(Ωc

1) = 0. (Why?) It

follows that Ω0 ∩ Ω1 has probability one, showing that g(zn) → g(z) with

probability one. 2

C.-M. Kuan (National Taiwan Univ.) Elements of Probability Theory December 5, 2009 25 / 58



Convergence in Probability

Convergence in Probability

{zn} is said to converge to z in probability if for every ε > 0,

lim
n→∞

IP(ω : |zn(ω)− z(ω)| > ε) = 0,

or equivalently, limn→∞ IP(ω : |zn(ω)− z(ω)| ≤ ε) = 1. This is denoted as

zn
IP−→ z or zn → z in probability.

Note: In this definition, the events Ωn(ε) = {ω : |zn(ω)− z(ω)| ≤ ε} may

vary with n, and convergence is referred to the probability of such events:

pn = IP(Ωn(ε)), rather than the random variables zn.
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Almost sure convergence implies convergence in probability.

To see this, let Ω0 denote the set of ω such that zn(ω) → z(ω). For

ω ∈ Ω0, there is some m such that ω is in Ωn(ε) for all n > m. That is,

Ω0 ⊆
∞⋃

m=1

∞⋂
n=m

Ωn(ε) ∈ F .

As ∩∞n=mΩn(ε) is non-decreasing in m, it follows that

IP(Ω0) ≤ IP

( ∞⋃
m=1

∞⋂
n=m

Ωn(ε)

)

= lim
m→∞

IP

( ∞⋂
n=m

Ωn(ε)

)
≤ lim

m→∞
IP
(
Ωm(ε)

)
.
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Example 5.15

Let Ω = [0, 1] and IP be the Lebesgue measure. Consider the
sequence of intervals {In} in [0, 1]: [0, 1/2), [1/2, 1], [0, 1/3),
[1/3, 2/3), [2/3, 1], . . . , and let zn = 1In . When n tends to infinity,
In shrinks toward a singleton. For 0 < ε < 1, we have

IP(|zn| > ε) = IP(In) → 0,

which shows zn
IP−→ 0. On the other hand, each ω ∈ [0, 1] must be

covered by infinitely many intervals, so that zn(ω) = 1 for infinitely
many n. This shows that zn(ω) does not converge to zero. 2

Note: Convergence in probability permits zn to deviate from the
probability limit infinitely often, but almost sure convergence does
not, except for those ω in the set of probability zero.
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Lemma 5.16

Let {zn} be a sequence of square integrable random variables. If

IE(zn) → c and var(zn) → 0, then zn
IP−→ c .

Lemma 5.17

Let g : R 7→ R be a function continuous on Sg ⊆ R. If zn
IP−→ z , where z

is a random variable such that IP(z ∈ Sg ) = 1, then g(zn)
IP−→ g(z).

Proof: By the continuity of g , for each ε > 0, we can find a δ > 0 s.t.

{ω : |zn(ω)− z(ω)| ≤ δ} ∩ {ω : z(ω) ∈ Sg}

⊆ {ω : |g(zn(ω))− g(z(ω))| ≤ ε}.

Taking complementation of both sides, we have

IP(|g(zn)− g(z)| > ε) ≤ IP(|zn − z | > δ) → 0.
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Lemma 5.13 and Lemma 5.17 are readily generalized to Rd -valued random

variables. For instance, zn
a.s.−→ z (zn

IP−→ z) implies

z1,n + z2,n
a.s.−→ (

IP−→) z1 + z2,

z1,nz2,n
a.s.−→ (

IP−→) z1z2,

z2
1,n + z2

2,n
a.s.−→ (

IP−→) z2
1 + z2

2 ,

where z1,n, z2,n are two elements of zn and z1, z2 are the corresponding

elements of z. Also, provided that z2 6= 0 with probability one,

z1,n/z2,n
a.s.−→ (

IP−→) z1/z2.
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Convergence in Distribution

Convergence in Distribution

{zn} is said to converge to z in distribution, denoted as zn
D−→ z , if

lim
n→∞

Fzn
(ζ) = Fz(ζ),

for every continuity point ζ of Fz .

We also say that zn is asymptotically distributed as Fz , denoted as

zn
A∼ Fz ; Fz is thus known as the limiting distribution of zn.

Cramér-Wold Device. Let {zn} be a sequence of random vectors in

Rd . Then zn
D−→ z if and only if α′zn

D−→ α′z for every α ∈ Rd such

that α′α = 1.
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Lemma 5.19

If zn
IP−→ z , then zn

D−→ z . For a constant c , zn
IP−→ c iff zn

D−→ c .

Proof: For some arbitrary ε > 0 and a continuity point ζ of Fz , we have

IP(zn ≤ ζ) =

IP({zn ≤ ζ} ∩ {|zn − z | ≤ ε}) + IP({zn ≤ ζ} ∩ {|zn − z | > ε})

≤ IP(z ≤ ζ + ε) + IP(|zn − z | > ε).

Similarly, IP(z ≤ ζ − ε) ≤ IP(zn ≤ ζ) + IP(|zn − z | > ε). If zn
IP−→ z , then

by passing to the limit and noting that ε is arbitrary,

lim
n→∞

IP(zn ≤ ζ) = IP(z ≤ ζ).

That is, Fzn
(ζ) → Fz(ζ). The converse is not true in general, however.
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Theorem 5.20 (Continuous Mapping Theorem)

Let g : R 7→ R be a function continuous almost everywhere on R, except

for at most countably many points. If zn
D−→ z , then g(zn)

D−→ g(z).

For example, zn
D−→ N (0, 1) implies z2

n
D−→ χ2(1).

Theorem 5.21

Let {yn} and {zn} be two sequences of random vectors such that

yn − zn
IP−→ 0. If zn

D−→ z , then yn
D−→ z .

Theorem 5.22

If yn converges in probability to a constant c and zn converges in

distribution to z , then yn + zn
D−→ c + z , ynzn

D−→ cz , and zn/yn
D−→ z/c

if c 6= 0.
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Non-Stochastic Order Notations

Order notations are used to describe the behavior of real sequences.

bn is (at most) of order cn, denoted as bn = O(cn), if there exists a

∆ < ∞ such that |bn|/cn ≤ ∆ for all sufficiently large n.

bn is of smaller order than cn, denoted as bn = o(cn), if bn/cn → 0.

An O(1) sequence in bounded; an o(1) sequence converges to zero.

The product of O(1) and o(1) sequences is o(1).

Theorem 5.23

(a) If an = O(nr ) and bn = O(ns), then anbn = O(nr+s), an +bn = O(nmax(r ,s)).

(b) If an = o(nr ) and bn = o(ns), then anbn = o(nr+s), an + bn = o(nmax(r ,s)).

(c) If an = O(nr ) and bn = o(ns), then anbn = o(nr+s), an + bn = O(nmax(r ,s)).
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Stochastic Order Notations

The order notations defined earlier easily extend to describe the behavior

of sequences of random variables.

{zn} is Oa.s.(cn) (or O(cn) almost surely) if zn/cn is O(1) a.s.

{zn} is OIP(cn) (or O(cn) in probability) if for every ε > 0, there is

some ∆ such that IP(|zn|/cn ≥ ∆) ≤ ε, for all n sufficiently large.

Lemma 5.23 holds for stochastic order notations. For example,

yn = OIP(1) and zn = oIP(1), then ynzn is oIP(1).

It is very restrictive to require a random variable being bounded

almost surely, but a well defined random variable is typically bounded

in probability, i.e., OIP(1).
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Let {zn} be a sequence of random variables such that zn
D−→ z and ζ be a

continuity point of Fz . Then for any ε > 0, we can choose a sufficiently

large ζ such that IP(|z | > ζ) < ε/2. As zn
D−→ z , we can also choose n

large enough such that

IP(|zn| > ζ)− IP(|z | > ζ) < ε/2,

which implies IP(|zn| > ζ) < ε. We have proved:

Lemma 5.24

Let {zn} be a sequence of random variables such that zn
D−→ z . Then

zn = OIP(1).
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Law of Large Numbers

When a law of large numbers holds almost surely, it is a strong law of

large numbers (SLLN); when a law of large numbers holds in

probability, it is a weak law of large numbers (WLLN).

A sequence of random variables obeys a LLN when its sample average

essentially follows its mean behavior; random irregularities (deviations

from the mean) are “wiped out” in the limit by averaging.

Kolmogorov’s SLLN : Let {zt} be a sequence of i.i.d. random

variables with mean µo . Then, T−1
∑T

t=1 zt
a.s.−→ µo .

Note that i.i.d. random variables need not obey Kolmogorov’s SLLN if

they do not have a finite mean, e.g., i.i.d. Cauchy random variables.
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Theorem 5.26 (Markov’s SLLN)

Let {zt} be a sequence of independent random variables such that for

some δ > 0, IE |zt |1+δ is bounded for all t. Then,

1

T

T∑
t=1

[zt − IE(zt)]
a.s.−→ 0.

Note that here zt need not have a common mean, and the average of

their means need not converge.

Compared with Kolmogorov’s SLLN, Markov’s SLLN requires a

stronger moment condition but not identical distribution.

A LLN usually obtains by regulating the moments of and dependence

across random variables.
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Examples

Example 5.27 Suppose that yt = αoyt−1 + ut with |αo | < 1. Then,

var(yt) = σ2
u/(1− α2

o), and cov(yt , yt−j) = αj
o

σ2
u

1−α2
o
. Thus,

var

(
T∑

t=1

yt

)
=

T∑
t=1

var(yt) + 2
T−1∑
τ=1

(T − τ) cov(yt , yt−τ )

≤
T∑

t=1

var(yt) + 2T
T−1∑
τ=1

| cov(yt , yt−τ )| = O(T ),

so that var
(
T−1

∑T
t=1 yt

)
= O(T−1). As IE(T−1

∑T
t=1 yt) = 0,

1
T

∑T
t=1 yt

IP−→ 0.

by Lemma 5.16. That is, {yt} obeys a WLLN.
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Lemma 5.28

Let yt =
∑∞

i=0 πiut−i , where ut are i.i.d. random variables with mean zero

and variance σ2
u. If

∑∞
i=−∞ |πi | < ∞, then T−1

∑T
t=1 yt

a.s.−→ 0.

In Example 5.27, yt =
∑∞

i=0 αi
out−i with |αo | < 1, so that∑∞

i=0 |αi
o | < ∞

Lemma 5.28 is quite general and applicable to processes that can be

expressed as an MA process with absolutely summable weights, e.g.,

weakly stationary AR(p) processes.

For random variables with strong correlations over time, the variation

of their partial sums may grow too rapidly and cannot be eliminated

by simple averaging.

C.-M. Kuan (National Taiwan Univ.) Elements of Probability Theory December 5, 2009 40 / 58



Example 5.29: For the sequences {t} and {t2},∑T
t=1 t = T (T + 1)/2,

∑T
t=1 t2 = T (T + 1)(2T + 1)/6.

Hence, T−1
∑T

t=1 t and T−1
∑T

t=1 t2 both diverge.

Example 5.30: ut are i.i.d. with mean zero and variance σ2
u. Consider

now {tut}, which does not have bounded (1 + δ) th moment and does not

obey Markov’s SLLN. Moreover,

var

(
T∑

t=1

tut

)
=

T∑
t=1

t2 var(ut) = σ2
u
T (T + 1)(2T + 1)

6
,

so that
∑T

t=1 tut = OIP(T 3/2). It follows that T−1
∑T

t=1 tut = OIP(T 1/2).

That is, {tut} does not obey a WLLN.
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Example 5.31: yt is a random walk: yt = yt−1 + ut . For s < t,

yt = ys +
∑t

i=s+1 ui = ys + vt−s ,

where vt−s is independent of ys and cov(yt , ys) = IE(y2
s ) = sσ2

u. Thus,

var

(
T∑

t=1

yt

)
=

T∑
t=1

var(yt) + 2
T−1∑
τ=1

T∑
t=τ+1

cov(yt , yt−τ ) = O(T 3),

for
∑T

t=1 var(yt) =
∑T

t=1 tσ2
u = O(T 2) and

2
T−1∑
τ=1

T∑
t=τ+1

cov(yt , yt−τ ) = 2
T−1∑
τ=1

T∑
t=τ+1

(t − τ)σ2
u = O(T 3).

Then,
∑T

t=1 yt = OIP(T 3/2) and T−1
∑T

t=1 yt diverges in probability.
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Example 5.32: yt is the random walk in Example 5.31. Then,

IE(yt−1ut) = 0, var(yt−1ut) = IE(y2
t−1) IE(u2

t ) = (t − 1)σ4
u, and for s < t,

cov(yt−1ut , ys−1us) = IE(yt−1ys−1us) IE(ut) = 0.

This yields

var

(
T∑

t=1

yt−1ut

)
=

T∑
t=1

var(yt−1ut) =
T∑

t=1

(t − 1)σ4
u = O(T 2),

and
∑T

t=1 yt−1ut = OIP(T ). As var(T−1
∑T

t=1 yt−1ut) converges to σ4
u/2,

rather than 0, {yt−1ut} does not obey a WLLN, even though its partial

sums are OIP(T ).
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Central Limit Theorem (CLT)

Lemma 5.35 (Lindeberg-Lévy’s CLT)

Let {zt} be a sequence of i.i.d. random variables with mean µo and

variance σ2
o > 0. Then,

√
T (z̄T − µo)/σo

D−→ N (0, 1).

i.i.d. random variables need not obey this CLT if they do not have a

finite variance, e.g., t(2) r.v.

Note that z̄T converges to µo in probability, and its variance σ2
o/T

vanishes when T tends to infinity. A normalizing factor T 1/2 suffices

to prevent a degenerate distribution in the limit.

When {zt} obeys a CLT, z̄T is said to converge to µo at the rate

T−1/2, and z̄T is understood as a root-T consistent estimator.
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Lemma 5.36 (Liapunov’s CLT)

Let {zTt} be a triangular array of independent random variables with mean

µTt and variance σ2
Tt > 0 such that σ̄2

T = 1
T

∑T
t=1 σ2

Tt → σ2
o > 0. If for

some δ > 0, IE |zTt |2+δ are bounded, then
√

T (z̄T − µ̄T )/σo
D−→ N (0, 1).

A CLT usually requires stronger conditions on the moment of and

dependence across random variables than those needed to ensure a

LLN.

Moreover, every random variable must also be asymptotically

negligible, in the sense that no random variable is influential in

affecting the partial sums.
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Examples

Example 5.37: {ut} is a sequence of independent random variables with

mean zero, variance σ2
u, and bounded (2 + δ) th moment. we know

var(
∑T

t=1 tut) is O(T 3), which implies that variance of T−1/2
∑T

t=1 tut is

diverging at the rate O(T 2). On the other hand, observe that

var

(
1

T 1/2

T∑
t=1

t

T
ut

)
=

T (T + 1)(2T + 1)

6T 3
σ2

u →
σ2

u

3
.

It follows that

√
3

T 1/2σu

T∑
t=1

t

T
ut

D−→ N (0, 1).

These results show that {(t/T )ut} obeys a CLT, whereas {tut} does not.
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Example 5.38: yt is a random walk: yt = yt−1 + ut , where ut are i.i.d.

with mean zero and variance σ2
u. We know yt do not obey a LLN and

hence do not obey a CLT.

CLT for Triangular Array

{zTt} is a triangular array of random variables and obeys a CLT if

1

σo

√
T

T∑
t=1

[zTt − IE(zTt)] =

√
T (z̄T − µ̄T )

σo

D−→ N (0, 1),

where z̄T = T−1
∑T

t=1 zTt , µ̄T = IE(z̄T ), and

σ2
T = var

(
T−1/2

T∑
t=1

zTt

)
→ σ2

o > 0.
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Consider an array of square integrable random vectors zTt in Rd . Let

z̄T denote the average of zTt , µ̄T = IE(z̄T ), and

ΣT = var

(
1√
T

T∑
t=1

zTt

)
→ Σo ,

a positive definite matrix. Using the Cramér-Wold device, {zTt} is

said to obey a multivariate CLT, in the sense that

Σ
−1/2
o

1√
T

T∑
t=1

[zTt − IE(zTt)] = Σ
−1/2
o

√
T (z̄T − µ̄T )

D−→ N (0, Id),

if {α′zTt} obeys a CLT, for any α ∈ Rd such that α′α = 1.
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Stochastic Processes

A d-dimensional stochastic process with the index set T is a

measurable mapping z : Ω 7→ (Rd)T such that

z(ω) = {zt(ω), t ∈ T }.

For each t ∈ T , zt(·) is a Rd -valued r.v.; for each ω, z(ω) is a sample

path (realization) of z, a Rd -valued function on T .

The finite-dimensional distributions of {z(t, ·), t ∈ T } is

IP(zt1 ≤ a1, . . . , ztn ≤ an) = Ft1,...,tn(a1, . . . , an).

z is stationary if Ft1,...,tn are invariant under index displacement.

z is Gaussian if Ft1,...,tn are all (multivariate) normal.
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Brownian motion

The process {w(t), t ∈ [0,∞)} is the standard Wiener process (standard

Brownian motion) if it has continuous sample paths almost surely and

satisfies:

1 IP
(
w(0) = 0

)
= 1.

2 For 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ,

IP
(
w(ti )−w(ti−1) ∈ Bi , i ≤ k

)
=
∏

i≤k IP
(
w(ti )− w(ti−1) ∈ Bi

)
,

where Bi are Borel sets.

3 For 0 ≤ s < t, w(t)− w(s) ∼ N (0, t − s).

Note: w here has independent and Gaussian increments.
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w(t) ∼ N (0, t) such that for r ≤ t,

cov
(
w(r), w(t)

)
= IE

[
w(r)

(
w(t)− w(r)

)]
+ IE

[
w(r)2

]
= r .

The sample paths of w are a.s. continuous but highly irregular

(nowhere differentiable).

To see this, note wc(t) = w(c2t)/c for c > 0 is also a standard

Wiener process. (Why?) Then, wc(1/c) = w(c)/c . For a large c

such that w(c)/c > 1, wc (1/c)
1/c = w(c) > c . That is, the sample path

of wc has a slope larger than c on a very small interval (0, 1/c).

The difference quotient:

[w(t + h)− w(t)]/h ∼ N (0, 1/|h|)

can not converge to a finite limit (as h → 0) with a positive prob.
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The d-dimensional, standard Wiener process w consists of d mutually

independent, standard Wiener processes, so that for s < t,

w(t)−w(s) ∼ N (0, (t − s) Id).

Lemma 5.39

Let w be the d-dimensional, standard Wiener process.

1 w(t) ∼ N (0, t Id).

2 cov(w(r), w(t)) = min(r , t) Id .

The Brownian bridge w0 on [0, 1] is w0(t) = w(t)− tw(1). Clearly,

IE[w0(t)] = 0, and for r < t,

cov
(
w0(r), w0(t)

)
= cov

(
w(r)− rw(1), w(t)− tw(1)

)
= r(1− t) Id .
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Weak Convergence

IPn converges weakly to IP, denoted as IPn ⇒ IP, if for every bounded,

continuous real function f on S ,∫
f (s) dIPn(s) →

∫
f (s) d IP(s),

where {IPn} and IP are probability measures on (S ,S).

When zn and z are all Rd -valued random variables, IPn ⇒ IP reduces

to the usual notion of convergence in distribution: zn
D−→ z.

When zn and z are d-dimensional stochastic processes with the

distributions induced by IPn and IP, zn
D−→ z, also denoted as zn ⇒ z,

implies that all the finite-dimensional distributions of zn converge to

the corresponding distributions of z.
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Continuous Mapping Theorem

Lemma 5.40 (Continuous Mapping Theorem)

Let g : Rd 7→ R be a function continuous almost everywhere on Rd , except

for at most countably many points. If zn ⇒ z, then g(zn) ⇒ g(z).

Proof: Let S and S ′ be two metric spaces with Borel σ-algebras S and S ′ and

g : S 7→ S ′ be a measurable mapping. For IP on (S ,S), define IP∗ on (S ′,S ′) as

IP∗(A′) = IP(g−1(A′)), A′ ∈ S ′.

For every bounded, continuous f on S ′, f ◦ g is also bounded and continuous on

S . IPn ⇒ IP now implies that∫
f ◦ g(s) dIPn(s) →

∫
f ◦ g(s) d IP(s),

which is equivalent to
∫

f (a) dIP∗n(a) →
∫

f (a) dIP∗(a), proving IP∗n ⇒ IP∗.
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Functional Central Limit Theorem (FCLT)

ζi are i.i.d. with mean zero and variance σ2. Let sn = ζ1 + · · ·+ ζn

and zn(i/n) = (σ
√

n)−1si .

For t ∈ [(i − 1)/n, i/n), the constant interpolations of zn(i/n) is

zn(t) = zn((i − 1)/n) =
1

σ
√

n
s[nt],

where [nt] is the the largest integer less than or equal to nt.

From Lindeberg-Lévy’s CLT,

1

σ
√

n
s[nt] =

(
[nt]

n

)1/2 1

σ
√

[nt]
s[nt]

D−→
√

tN (0, 1),

which is just N (0, t), the distribution of w(t).
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For r < t, we have

(zn(r), zn(t)− zn(r))
D−→
(
w(r), w(t)− w(r)

)
,

and hence (zn(r), zn(t))
D−→ (w(r), w(t)). This is easily extended to

establish convergence of any finite-dimensional distributions and leads

to the functional central limit theorem.

Lemma 5.41 (Donsker)

Let ζt be i.i.d. with mean µo and variance σ2
o > 0 and

zT (r) =
1

σo

√
T

[Tr ]∑
t=1

(ζt − µo), r ∈ [0, 1].

Then, zT ⇒ w as T →∞.
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Let ζt be r.v.s with mean µt and variance σ2
t > 0. Define long-run

variance of ζt as

σ2
∗ = lim

T→∞
var

(
1√
T

T∑
t=1

ζt

)
,

{ζt} is said to obey an FCLT if zT ⇒ w as T →∞, where

zT (r) =
1

σ∗
√

T

[Tr ]∑
t=1

(
ζt − µt

)
, r ∈ [0, 1].

In the multivariate context, FCLT is zT ⇒ w as T →∞, where

zT (r) =
1√
T

Σ
−1/2
∗

[Tr ]∑
t=1

(
ζt − µt

)
, r ∈ [0, 1],

w is the d-dimensional, standard Wiener process, and

Σ∗ = lim
T→∞

1

T
IE

( T∑
t=1

(ζt − µt)

)(
T∑

t=1

(ζt − µt)

)′ ,
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Example 5.43

yt = yt−1 + ut , t = 1, 2, . . ., with y0 = 0, where ut are i.i.d. with

mean zero and variance σ2
u.

By Donsker’s FCLT, the partial sum y[Tr ] =
∑[Tr ]

t=1 ut is such that

1

T 3/2

T∑
t=1

yt = σu

T∑
t=1

∫ t/T

(t−1)/T

1√
Tσu

y[Tr ] dr ⇒ σu

∫ 1

0
w(r) dr ,

This result also verifies that
∑T

t=1 yt is OIP(T 3/2). Similarly,

1

T 2

T∑
t=1

y2
t =

1

T

T∑
t=1

( yt√
T

)2
⇒ σ2

u

∫ 1

0
w(r)2 dr ,

so that
∑T

t=1 y2
t is OIP(T 2).

C.-M. Kuan (National Taiwan Univ.) Elements of Probability Theory December 5, 2009 58 / 58


	Probability Space and Random Variables
	Probability Space
	Random Variables
	Moments and Norms

	Conditional Distributions and Moments
	Conditional Distributions
	Conditional Moments

	Modes of Convergence
	Almost Sure Convergence
	Convergence in Probability
	Convergence in Distribution

	Stochastic Order Notations
	Law of Large Numbers
	Central Limit Theorem
	Stochastic Processes
	Brownian motion
	Weak Convergence

	Functional Central Limit Theorem

