Classical Least Squares Theory

CHUNG-MING KUAN

Department of Finance & CRETA National Taiwan University

October 18, 2014

C.-M. Kuan (Finance & CRETA, NTU)

Classical Least Squares Theory

October 18, 2014

Lecture Outline

The Method of Ordinary Least Squares (OLS)

- Simple Linear Regression
- Multiple Linear Regression
- Geometric Interpretations
- Measures of Goodness of Fit
- Example: Analysis of Suicide Rate

2 Statistical Properties of the OLS Estimator

- Classical Conditions
- Without the Normality Condition
- With the Normality Condition

3 Hypothesis Testing

- Tests for Linear Hypotheses
- Power of the Tests
- Alternative Interpretation of the F Test
- Confidence Regions
- Example: Analysis of Suicide Rate

Lecture Outline (cont'd)

Multicollinearity

- Near Multicollinearity
- Regression with Dummy Variables
- Example: Analysis of Suicide Rate

5 Limitation of the Classical Conditions

6 The Method of Generalized Least Squares (GLS)

- The GLS Estimator
- Stochastic Properties of the GLS Estimator
- The Feasible GLS Estimator
- Heteroskedasticity
- Serial Correlation
- Application: Linear Probability Model
- Application: Seemingly Unrelated Regressions

Given the variable of interest y, we are interested in finding a function of another variable x that can characterize the systematic behavior of y.

- y: Dependent variable or regressand
- x: Explanatory variable or regressor
- Specifying a linear function of x: $\alpha + \beta x$ with unknown parameters α and β
- The non-systematic part is the error: $y (\alpha + \beta x)$

Together we write:

$$y = \underbrace{\alpha + \beta x}_{\text{linear function}} + \underbrace{e(\alpha, \beta)}_{\text{error}}.$$

For the specification $\alpha + \beta x$, the objective is to find the "best" fit of the data (y_t, x_t) , t = 1, ..., T.

1 Minimizing a least-squares (LS) criterion function wrt α and β :

$$Q_T(\alpha,\beta) := \frac{1}{T} \sum_{t=1}^T (y_t - \alpha - \beta x_t)^2.$$

Inimitial a least-absolute-deviation (LAD) criterion wrt α and β :

$$\frac{1}{T}\sum_{t=1}^{T}|y_t - \alpha - \beta x_t|.$$

Minimizing asymmetrically weighted absolute deviations:

$$\frac{1}{T} \left(\theta \sum_{t: y_t > \alpha + \beta x_t} |y_t - \alpha - \beta x_t| + (1 - \theta) \sum_{t: y_t < \alpha + \beta x_t} |y_t - \alpha - \beta x_t| \right)$$

with $0 < \theta < 1$.

For the specification $\alpha + \beta x$, the objective is to find the "best" fit of the data (y_t, x_t) , t = 1, ..., T.

1 Minimizing a least-squares (LS) criterion function wrt α and β :

$$Q_T(\alpha,\beta) := \frac{1}{T} \sum_{t=1}^T (y_t - \alpha - \beta x_t)^2.$$

2 Minimizing a least-absolute-deviation (LAD) criterion wrt α and β :

$$\frac{1}{T}\sum_{t=1}^{T}|y_t - \alpha - \beta x_t|.$$

Minimizing asymmetrically weighted absolute deviations:

$$\frac{1}{T} \left(\theta \sum_{t: y_t > \alpha + \beta x_t} |y_t - \alpha - \beta x_t| + (1 - \theta) \sum_{t: y_t < \alpha + \beta x_t} |y_t - \alpha - \beta x_t| \right)$$

with $0 < \theta < 1$.

For the specification $\alpha + \beta x$, the objective is to find the "best" fit of the data (y_t, x_t) , t = 1, ..., T.

1 Minimizing a least-squares (LS) criterion function wrt α and β :

$$Q_T(\alpha,\beta) := \frac{1}{T} \sum_{t=1}^T (y_t - \alpha - \beta x_t)^2.$$

2 Minimizing a least-absolute-deviation (LAD) criterion wrt α and β :

$$\frac{1}{T}\sum_{t=1}^{T}|y_t - \alpha - \beta x_t|.$$

Minimizing asymmetrically weighted absolute deviations:

$$\frac{1}{T} \left(\theta \sum_{t: y_t > \alpha + \beta x_t} |y_t - \alpha - \beta x_t| + (1 - \theta) \sum_{t: y_t < \alpha + \beta x_t} |y_t - \alpha - \beta x_t| \right),$$

with $0 < \theta < 1$.

The OLS Estimators

• The first order conditions (FOCs) of LS minimization are:

$$\frac{\partial Q_T(\alpha,\beta)}{\partial \alpha} = -\frac{2}{T} \sum_{t=1}^T (y_t - \alpha - \beta x_t) = 0,$$
$$\frac{\partial Q_T(\alpha,\beta)}{\partial \beta} = -\frac{2}{T} \sum_{t=1}^T (y_t - \alpha - \beta x_t) x_t = 0.$$

• The solutions are known as the ordinary least squares (OLS) estimators:

$$\hat{\beta}_{T} = \frac{\sum_{t=1}^{T} (y_t - \bar{y})(x_t - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2},$$
$$\hat{\alpha}_{T} = \bar{y} - \hat{\beta}_{T} \bar{x}.$$

- The estimated regression line is ŷ = â_T + β_Tx, which is the linear function evaluated at â_T and β_T, and ê = y − ŷ is the error evaluated at â_T and β_T and also known as residual.
 - The *t*-th fitted value of the regression line is $\hat{y}_t = \hat{\alpha}_T + \hat{\beta}_T x_t$.
 - The *t*-th residual is $\hat{e}_t = y_t \hat{y}_t = e_t(\hat{\alpha}_T, \hat{\beta}_T)$.
 - No other linear functions of the form *a* + *bx* can provide a better fit of the data in terms of sum of squared errors.
- β̂_T characterizes the the predicted change of y, given a change of one unit of x, whereas â_T is the predicted y without (the information of) x.
- Note that the OLS method requires no assumption on the data, except that x_t can not be a constant.

Algebraic Properties

Substituting $\hat{\alpha}_{\mathcal{T}}$ and $\hat{\beta}_{\mathcal{T}}$ into the FOCs:

$$\frac{1}{T}\sum_{t=1}^{T}(y_t - \alpha - \beta x_t) = 0, \qquad \frac{1}{T}\sum_{t=1}^{T}(y_t - \alpha - \beta x_t)x_t = 0,$$

we have the following algebraic results:

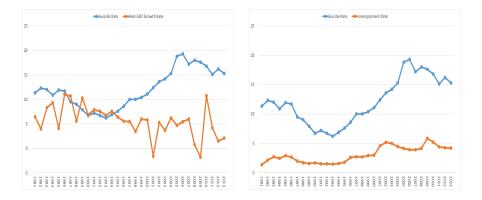
- $\sum_{t=1}^{T} \hat{e}_t = 0.$ • $\sum_{t=1}^{T} \hat{e}_t x_t = 0.$ • $\sum_{t=1}^{T} y_t = \sum_{t=1}^{T} \hat{y}_t$ so that $\bar{y} = \bar{y}$.
- $\bar{y} = \hat{\alpha}_T + \hat{\beta}_T \bar{x}$; that is, the estimated regression line must pass through the point (\bar{x}, \bar{y}) .

Example: Analysis of Suicide Rate

- Suppose we want to know how the suicide rate (s) in Taiwan can be explained by unemployment rate (u), GDP growth rate (g), or time (t). The suicide rate is 1/100000.
- Data (1981–2013): $\bar{s} = 12.05$ with s.d. 3.91; $\bar{g} = 5.64$ with s.d. 3.16; $\bar{u} = 3.09$ with s.d. 1.33.
- Estimation results:

$$\begin{split} \hat{s}_t &= 15.11 - 0.54 \, g_t, \quad \bar{R}^2 = 0.17; \\ \hat{s}_t &= 15.56 - 0.61 \, g_{t-1}, \quad \bar{R}^2 = 0.21; \\ \hat{s}_t &= 4.40 + 2.48 \, u_t, \quad \bar{R}^2 = 0.70; \\ \hat{s}_t &= 4.84 + 2.40 \, u_{t-1}, \quad \bar{R}^2 = 0.68; \\ \hat{s}_t &= 7.40 + 0.27 \, t, \quad \bar{R}^2 = 0.44. \end{split}$$

Suicide Rates 1981–2013



(a) Suicide & GDP growth rates

(b) Suicide and unemploy. rates

< 一型

C.-M. Kuan (Finance & CRETA, NTU)

Classical Least Squares Theory

October 18, 2014

Multiple Linear Regression

• With k regressors x_1, \ldots, x_k (x_1 is usually the constant one):

$$y = \beta_1 x_1 + \cdots + \beta_k x_k + e(\beta_1, \ldots, \beta_k).$$

• With data $(y_t, x_{t1}, \ldots, x_{tk})$, $t = 1, \ldots, T$, we can write

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}(\boldsymbol{\beta}), \tag{1}$$

where $\boldsymbol{\beta} = (\beta_1 \ \beta_2 \ \cdots \ \beta_k)'$,

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T1} & x_{T2} & \cdots & x_{Tk} \end{bmatrix}, \quad \mathbf{e}(\beta) = \begin{bmatrix} e_1(\beta) \\ e_2(\beta) \\ \vdots \\ e_T(\beta) \end{bmatrix}$$

.

• Least-squares criterion function:

$$Q_{T}(\beta) := \frac{1}{T} \mathbf{e}(\beta)' \mathbf{e}(\beta) = \frac{1}{T} (\mathbf{y} - \mathbf{X}\beta)' (\mathbf{y} - \mathbf{X}\beta).$$
(2)

The FOCs of minimizing Q_T(β) are -2X'(y - Xβ)/T = 0, leading to the normal equations:

$$\mathbf{X}'\mathbf{X}\boldsymbol{eta} = \mathbf{X}'\mathbf{y}$$

- Identification Requirement [ID-1]: X is of full column rank k.
 - Any column of **X** is not a linear combination of other columns.
 - Intuition: **X** does not contain redundant information.
 - When When **X** is not of full column rank, we say there exists exact multicollinearity among regressors.

Given [ID-1], X'X is positive definite and hence invertible. The unique solution to the normal equations is known as the OLS estimator of β:

$$\hat{\boldsymbol{\beta}}_{\mathcal{T}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$
(3)

• Under [ID-1], we have the second order condition:

$$abla^2_{oldsymbol{eta}} \, Q_{\mathcal{T}}(oldsymbol{eta}) = 2(\mathbf{X}'\mathbf{X})/\mathcal{T} \;\; ext{is p.d.}$$

 The result below requires only the identification requirement and does not depend on the statistical properties of y and X.

Theorem 3.1

Given specification (1), suppose [ID-1] holds. Then, the OLS estimator $\hat{\boldsymbol{\beta}}_{T} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ uniquely minimizes the criterion function (2).

- The magnitude of $\hat{\beta}_{T}$ is affected by the measurement units of the dependent and explanatory variables.
 - A larger coefficient does not imply that the associated regressor is more important.
 - The so-called "beta coefficients" (see homework) do not depend on the measurement units, and hence their magnitudes are comparable.
- Given $\hat{\boldsymbol{\beta}}_{\mathcal{T}}$, the vector of the OLS fitted values is $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}_{\mathcal{T}}$, and the vector of the OLS residuals is $\hat{\mathbf{e}} = \mathbf{y} \hat{\mathbf{y}} = \mathbf{e}(\hat{\boldsymbol{\beta}}_{\mathcal{T}})$.
- Plugging $\hat{\boldsymbol{\beta}}_{\mathcal{T}}$ into the FOCs: $\mathbf{X}'(\mathbf{y} \mathbf{X}\boldsymbol{\beta}) = \mathbf{0}$, we have:
 - $X'\hat{e} = 0$.
 - When **X** contains a vector of ones, $\sum_{t=1}^{T} \hat{e}_t = 0$.
 - $\hat{\mathbf{y}}'\hat{\mathbf{e}} = \hat{\boldsymbol{\beta}}_T'\mathbf{X}'\hat{\mathbf{e}} = 0.$

These are all algebraic results under the OLS method.

Recall that $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is the orthogonal projection matrix that projects vectors onto span(\mathbf{X}), and $\mathbf{I}_{\mathcal{T}} - \mathbf{P}$ is the orthogonal projection matrix that projects vectors onto span(\mathbf{X})^{\perp}, the orthogonal complement of span(\mathbf{X}). Thus, $\mathbf{P}\mathbf{X} = \mathbf{X}$ and $(\mathbf{I}_{\mathcal{T}} - \mathbf{P})\mathbf{X} = \mathbf{0}$.

- The vector of fitted values, ŷ = Xβ_T = X(X'X)⁻¹X'y = Py, is the orthogonal projection of y onto span(X).
- The residual vector, $\hat{\mathbf{e}} = \mathbf{y} \hat{\mathbf{y}} = (\mathbf{I}_T \mathbf{P})\mathbf{y}$, is the orthogonal projection of \mathbf{y} onto span $(\mathbf{X})^{\perp}$.
- $\hat{\mathbf{e}}$ is orthogonal to X, i.e., $\mathbf{X}'\hat{\mathbf{e}} = \mathbf{0}$, and it is also orthogonal to $\hat{\mathbf{y}}$ because $\hat{\mathbf{y}}$ is in span(X), i.e., $\hat{\mathbf{y}}'\hat{\mathbf{e}} = 0$.

15 / 100

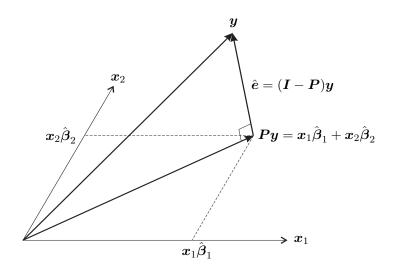


Figure: The orthogonal projection of \mathbf{y} onto span $(\mathbf{x}_1, \mathbf{x}_2)$.

Theorem 3.3 (Frisch-Waugh-Lovell)

Given $\mathbf{y} = \mathbf{X}_1 eta_1 + \mathbf{X}_2 eta_2 + \mathbf{e}$, the OLS estimators of eta_1 and eta_2 are

$$\hat{\boldsymbol{\beta}}_{1,T} = [\mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)\mathbf{X}_1]^{-1}\mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)\mathbf{y},$$

$$\hat{\boldsymbol{eta}}_{2,\mathcal{T}} = [\mathbf{X}_2'(\mathbf{I} - \mathbf{P}_1)\mathbf{X}_2]^{-1}\mathbf{X}_2'(\mathbf{I} - \mathbf{P}_1)\mathbf{y},$$

where $\mathbf{P}_1 = \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1'$ and $\mathbf{P}_2 = \mathbf{X}_2 (\mathbf{X}_2' \mathbf{X}_2)^{-1} \mathbf{X}_2'$.

- $\hat{\boldsymbol{\beta}}_{1,T}$ can also be computed from regressing $(\mathbf{I} \mathbf{P}_2)\mathbf{y}$ on $(\mathbf{I} \mathbf{P}_2)\mathbf{X}_1$, where $(\mathbf{I} - \mathbf{P}_2)\mathbf{y}$ and $(\mathbf{I} - \mathbf{P}_2)\mathbf{X}_1$ are the residual vectors of \mathbf{y} on \mathbf{X}_2 and \mathbf{X}_1 on \mathbf{X}_2 , respectively. That is, $\hat{\boldsymbol{\beta}}_{1,T}$ characterizes the marginal effect of \mathbf{X}_1 on \mathbf{y} , after the effect of \mathbf{X}_2 is purged away.
- Similarly, regressing $(\mathbf{I} \mathbf{P}_1)\mathbf{y}$ on $(\mathbf{I} \mathbf{P}_1)\mathbf{X}_2$ yields $\hat{\boldsymbol{\beta}}_{2,T}$. Thus, That is, $\hat{\boldsymbol{\beta}}_{2,T}$ characterizes the marginal effect of \mathbf{X}_x on \mathbf{y} , after the effect of \mathbf{X}_1 is purged away.

э.

17 / 100

Proof: Writing $\mathbf{y} = \mathbf{X}_1 \hat{\beta}_{1,T} + \mathbf{X}_2 \hat{\beta}_{2,T} + (\mathbf{I} - \mathbf{P})\mathbf{y}$, where $\mathbf{P} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$ with $\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2]$, we have

$$\begin{split} \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)\mathbf{y} \\ &= \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)\mathbf{X}_1\hat{\boldsymbol{\beta}}_{1,T} + \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)\mathbf{X}_2\hat{\boldsymbol{\beta}}_{2,T} + \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)(\mathbf{I} - \mathbf{P})\mathbf{y} \\ &= \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)\mathbf{X}_1\hat{\boldsymbol{\beta}}_{1,T} + \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2)(\mathbf{I} - \mathbf{P})\mathbf{y}. \end{split}$$

We know span(X_2) \subseteq span(X), so that span(X)^{\perp} \subseteq span(X_2)^{\perp}. Hence, $(I - P_2)(I - P) = I - P$, and

$$\begin{split} \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2) \mathbf{y} &= \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2) \mathbf{X}_1 \hat{\boldsymbol{\beta}}_{1,\mathcal{T}} + \mathbf{X}_1'(\mathbf{I} - \mathbf{P}) \mathbf{y} \\ &= \mathbf{X}_1'(\mathbf{I} - \mathbf{P}_2) \mathbf{X}_1 \hat{\boldsymbol{\beta}}_{1,\mathcal{T}}, \end{split}$$

from which we obtain the expression for $\hat{\beta}_{1,T}$.

- The OLS estimator of regressing y on X₁ is not the same as β̂_{1,T}, unless X₁ and X₂ are orthogonal to each other.
- Regressing y on X₁ and X₂ enables us to assess the marginal effect of X₁ on y while "controlling" the effect of X₂ and also the marginal effect of X₂ on y while "controlling" the effect of X₁.
- When one regresses y on X₁ only, the estimated marginal effect of X₁ is affected by other relevant variables not included in the regression.

Observe that $(\mathbf{I} - \mathbf{P}_1)\mathbf{y} = (\mathbf{I} - \mathbf{P}_1)\mathbf{X}_2\hat{\boldsymbol{\beta}}_{2,T} + (\mathbf{I} - \mathbf{P}_1)(\mathbf{I} - \mathbf{P})\mathbf{y}.$

 (I - P₁)(I - P) = I - P, so that the residual vector of regressing (I - P₁)y on (I - P₁)X₂ is identical to the residual vector of regressing y on X = [X₁ X₂]:

$$(\mathbf{I} - \mathbf{P}_1)\mathbf{y} = (\mathbf{I} - \mathbf{P}_1)\mathbf{X}_2\hat{\boldsymbol{\beta}}_{2,T} + (\mathbf{I} - \mathbf{P})\mathbf{y}_2$$

P₁ = P₁P, so that the orthogonal projection of y directly on span(X₁) (i.e., P₁y) is equivalent to iterated projections of y on span(X) and then on span(X₁) (i.e., P₁Py). Hence,

$$(\mathbf{I} - \mathbf{P}_1)\mathbf{X}_2 \hat{\boldsymbol{\beta}}_{2,T} = (\mathbf{I} - \mathbf{P}_1)\mathbf{P}\mathbf{y} = (\mathbf{P} - \mathbf{P}_1)\mathbf{y}.$$

20 / 100

・ 「「・ ・ 」 ・ ・ 」 ・ 」 ・

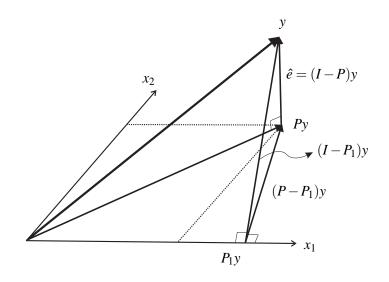


Figure: An illustration of the Frisch-Waugh-Lovell Theorem.

э

Measures of Goodness of Fit

- Given $\hat{\mathbf{y}}'\hat{\mathbf{e}} = 0$, we have $\mathbf{y}'\mathbf{y} = \hat{\mathbf{y}}'\hat{\mathbf{y}} + \hat{\mathbf{e}}'\hat{\mathbf{e}}$, where $\mathbf{y}'\mathbf{y}$ is known as TSS (total sum of squares), $\hat{\mathbf{y}}'\hat{\mathbf{y}}$ is RSS (regression sum of squares), and $\hat{\mathbf{e}}'\hat{\mathbf{e}}$ is ESS (error sum of squares).
- The non-centered coefficient of determination (or non-centered R^2),

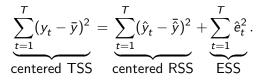
$$R^2 = \frac{\text{RSS}}{\text{TSS}} = 1 - \frac{\text{ESS}}{\text{TSS}},\tag{4}$$

measures the proportion of the total variation of y_t that can be explained by the model.

- It is invariant wrt measurement units of the dependent variable but not invariant wrt constant addition.
- It is a relative measure such that $0 \le R^2 \le 1$.
- It is nondecreasing in the number of regressors. (Why?)

Centered R^2

• When the specification contains a constant term,



• The centered coefficient of determination (or centered R^2),

$$R^{2} = \frac{\sum_{t=1}^{T} (\hat{y}_{t} - \bar{y})^{2}}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}} = \frac{\text{Centered RSS}}{\text{Centered TSS}} = 1 - \frac{\text{ESS}}{\text{Centered TSS}},$$

measures the proportion of the total variation of y_t that can be explained by the model, excluding the effect of the constant term.

- It is invariant wrt constant addition.
- $0 \le R^2 \le 1$, and it is non-decreasing in the number of regressors.
- It may be negative when the model does not contain a constant term.

Centered R^2 : Alternative Interpretation

• When the specification contains a constant term,

$$\sum_{t=1}^{T} (y_t - \bar{y})(\hat{y}_t - \bar{y}) = \sum_{t=1}^{T} (\hat{y}_t - \bar{y} + \hat{e}_t)(\hat{y}_t - \bar{y}) = \sum_{t=1}^{T} (\hat{y}_t - \bar{y})^2,$$

because $\sum_{t=1}^{T} \hat{y}_t \hat{e}_t = \sum_{t=1}^{t} \hat{e}_t = 0.$

• Centered R^2 can also be expressed as

$$R^{2} = \frac{\sum_{t=1}^{T} (\hat{y}_{t} - \bar{y})^{2}}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}} = \frac{\left[\sum_{t=1}^{T} (y_{t} - \bar{y})(\hat{y}_{t} - \bar{y})\right]^{2}}{\left[\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}\right]\left[\sum_{t=1}^{T} (\hat{y}_{t} - \bar{y})^{2}\right]},$$

which is the squared sample correlation coefficient of y_t and \hat{y}_t , also known as the squared multiple correlation coefficient.

• Models for different dep. variables are not comparable in terms of R².

• Adjusted R^2 is the centered R^2 adjusted for the degrees of freedom:

$$\bar{R}^2 = 1 - \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}/(T-k)}{(\mathbf{y}'\mathbf{y} - T\bar{y}^2)/(T-1)}.$$

• \bar{R}^2 adds a penalty term to R^2 :

$$\bar{R}^2 = 1 - rac{T-1}{T-k}(1-R^2) = R^2 - rac{k-1}{T-k}(1-R^2),$$

where the penalty term depends on the trade-off between model complexity and model explanatory ability.

• \overline{R}^2 may be negative and need not be non-decreasing in k.

Example: Analysis of Suicide Rate

- Q: How the suicide rate (s) can be explained by unemployment rate (u), GDP growth rate (g), and time (t) during 1981–2010?
- Estimation results with g_t and u_t :

$$\hat{s}_t = 15.11 - 0.54 g_t, \quad \bar{R}^2 = 0.17;$$

 $\hat{s}_t = 4.40 + 2.48 u_t, \quad \bar{R}^2 = 0.70;$
 $\hat{s}_t = 4.20 + 2.50 u_t + 0.02 g_t, \quad \bar{R}^2 = 0.69.$

Estimation results with g_{t-1} and u_{t-1} :

$$\hat{s}_t = 15.56 - 0.61 g_{t-1}, \quad \bar{R}^2 = 0.21;$$

 $\hat{s}_t = 4.84 + 2.40 u_{t-1}, \quad \bar{R}^2 = 0.68;$
 $\hat{s}_t = 5.56 + 2.31 u_{t-1} - 0.08 g_{t-1}, \quad \bar{R}^2 = 0.67.$

• Estimation results with *t* but without *g*:

$$\begin{split} \hat{s}_t &= 4.40 + 2.48 \, u_t, \quad \bar{R}^2 = 0.70; \\ \hat{s}_t &= 4.41 + 2.41 \, u_t + 0.01 \, t, \quad \bar{R}^2 = 0.69; \\ \hat{s}_t &= 4.84 + 2.40 \, u_{t-1}, \quad \bar{R}^2 = 0.68; \\ \hat{s}_t &= 4.84 + 2.35 \, u_{t-1} + 0.01 \, t, \quad \bar{R}^2 = 0.67. \end{split}$$

• Estimation results with *t* and *g*:

$$\begin{split} \hat{s}_t &= 4.20 + 2.50 \ u_t + 0.02 \ g_t, \quad \bar{R}^2 = 0.69; \\ \hat{s}_t &= 4.16 + 2.43 \ u_t + 0.03 \ g_t + 0.01 \ t, \quad \bar{R}^2 = 0.68; \\ \hat{s}_t &= 5.56 + 2.31 \ u_{t-1} - 0.08 \ g_{t-1}, \quad \bar{R}^2 = 0.67; \\ \hat{s}_t &= 5.55 + 2.29 \ u_{t-1} - 0.08 \ g_{t-1} + 0.004 \ t, \quad \bar{R}^2 = 0.66 \end{split}$$

- 一司

э

• Estimation results with t and t^2 :

$$\begin{split} \hat{s}_t &= 7.40 + 0.27 t, \quad \bar{R}^2 = 0.44; \\ \hat{s}_t &= 11.60 - 0.45 t + 0.02 t^2, \quad \bar{R}^2 = 0.63; \\ \hat{s}_t &= 8.05 + 1.93 u_t - 0.46 t + 0.02 t^2, \quad \bar{R}^2 = 0.78; \\ \hat{s}_t &= 12.27 - 0.09 g_t - 0.45 t + 0.02 t^2, \quad \bar{R}^2 = 0.62; \\ \hat{s}_t &= 7.68 + 1.96 u_t + 0.04 g_t - 0.46 t + 0.02 t^2, \quad \bar{R}^2 = 0.77; \\ \hat{s}_t &= 8.37 + 1.80 u_{t-1} - 0.43 t + 0.01 t^2, \quad \bar{R}^2 = 0.75; \\ \hat{s}_t &= 13.02 - 0.18 g_{t-1} - 0.45 t + 0.02 t^2, \quad \bar{R}^2 = 0.64; \\ \hat{s}_t &= 9.03 + 1.74 u_{t-1} - 0.07 g_{t-1} - 0.43 t + 0.01 t^2, \quad \bar{R}^2 = 0.74. \end{split}$$

As far as R² is concerned, a specification with t, t², and u seems to provide good fit of data and reasonable interpretation.
 Q: Is there any other way to determine if a specification is "good"?

To derive the statistical properties of the OLS estimator, we assume:

- [A1] **X** is non-stochastic.
- [A2] **y** is a random vector such that

(i)
$$\mathbb{E}(\mathbf{y}) = \mathbf{X}\beta_o$$
 for some β_o ;
(ii) $\operatorname{var}(\mathbf{y}) = \sigma_o^2 \mathbf{I}_T$ for some $\sigma_o^2 > 0$.

[A3] **y** is a random vector s.t. $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}_o, \sigma_o^2 \mathbf{I}_T)$ for some $\boldsymbol{\beta}_o$ and $\sigma_o^2 > 0$.

- The specification (1) with [A1] and [A2] is known as the classical linear model, whereas (1) with [A1] and [A3] is the classical normal linear model.
- When var(y) = σ_o²l_T, the elements of y are homoskedastic and (serially) uncorrelated.

3

The OLS estimator of the parameter σ_o^2 is an average of squared residuals:

$$\hat{\sigma}_T^2 = rac{1}{T-k}\sum_{t=1}^T \hat{\mathbf{e}}_t^2.$$

Theorem 3.4

Consider the linear specification (1).

- (a) Given [A1] and [A2](i), $\hat{\beta}_{T}$ is unbiased for β_{o} .
- (b) Given [A1] and [A2], $\hat{\sigma}_T^2$ is unbiased for σ_o^2 .
- (c) Given [A1] and [A2], $\operatorname{var}(\hat{\boldsymbol{\beta}}_{\mathcal{T}}) = \sigma_o^2 (\mathbf{X}' \mathbf{X})^{-1}$.

Proof: By [A1], $\mathbb{E}(\hat{\boldsymbol{\beta}}_{\mathcal{T}}) = \mathbb{E}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}] = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}(\mathbf{y})$. [A2](i) gives $\mathbb{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}_{o}$, so that

$$\mathbb{E}(\hat{oldsymbol{eta}}_{\mathcal{T}}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}oldsymbol{eta}_o = oldsymbol{eta}_o,$$

proving unbiasedness. Given $\hat{\mathbf{e}} = (\mathbf{I}_T - \mathbf{P})\mathbf{y} = (\mathbf{I}_T - \mathbf{P})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_o)$,

$$\begin{split} \mathbb{E}(\hat{\mathbf{e}}'\hat{\mathbf{e}}) &= \mathbb{E}[\operatorname{trace}((\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})'(\mathbf{I}_{T} - \mathbf{P})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o}))] \\ &= \mathbb{E}[\operatorname{trace}((\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})'(\mathbf{I}_{T} - \mathbf{P}))] \\ &= \operatorname{trace}(\mathbb{E}[(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})'](\mathbf{I}_{T} - \mathbf{P})) \\ &= \operatorname{trace}(\sigma_{o}^{2}\mathbf{I}_{T}(\mathbf{I}_{T} - \mathbf{P})) \\ &= \sigma_{o}^{2}\operatorname{trace}(\mathbf{I}_{T} - \mathbf{P}), \end{split}$$

where the 4-th equality follows from [A2](ii) that $var(\mathbf{y}) = \sigma_o^2 \mathbf{I}_T$.

Proof (cont'd): As trace $(\mathbf{I}_T - \mathbf{P}) = \operatorname{rank}(\mathbf{I}_T - \mathbf{P}) = T - k$, we have $\mathbb{E}(\hat{\mathbf{e}}'\hat{\mathbf{e}}) = \sigma_o^2(T - k)$ and

$$\mathbb{E}(\hat{\sigma}_T^2) = \mathbb{E}(\hat{\mathbf{e}}'\hat{\mathbf{e}})/(T-k) = \sigma_o^2,$$

proving (b). By [A1] and [A2](ii),

$$\begin{aligned} \operatorname{var}(\hat{\boldsymbol{\beta}}_{\mathcal{T}}) &= \operatorname{var}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}) \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'[\operatorname{var}(\mathbf{y})]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma_o^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{I}_{\mathcal{T}}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma_o^2(\mathbf{X}'\mathbf{X})^{-1}. \end{aligned}$$

This establishes the assertion of (c).

3

- Theorem 3.4 establishes unbiasedness of the OLS estimators $\hat{\beta}_{T}$ and $\hat{\sigma}_{T}^{2}$ but does not address the issue of efficiency.
- By Theorem 3.4(c), the elements of β_T can be more precisely estimated (i.e., with a smaller variance) when X has larger variation. To see this, consider the simple linear regression: y = α + βx + e, it can be verified that

$$\operatorname{var}(\hat{\beta}_{T}) = \sigma_{o}^{2} \frac{1}{\sum_{t=1}^{T} (x_{t} - \bar{x})^{2}}$$

Thus, the larger the (squared) variation of x_t (i.e., $\sum_{t=1}^{T} (x_t - \bar{x})^2$), the smaller is the variance of $\hat{\beta}_T$.

The result below establishes efficiency of $\hat{\beta}_{T}$ among all unbiased estimators of β_{o} that are linear in **y**.

Theorem 3.5 (Gauss-Markov)

Given linear specification (1), suppose that [A1] and [A2] hold. Then the OLS estimator $\hat{\beta}_{T}$ is the best linear unbiased estimator (BLUE) for β_{o} .

Proof: Consider an arbitrary linear estimator $\check{\boldsymbol{\beta}}_{\mathcal{T}} = \mathbf{A}\mathbf{y}$, where \mathbf{A} is a non-stochastic matrix, say, $\mathbf{A} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' + \mathbf{C}$. Then, $\check{\boldsymbol{\beta}}_{\mathcal{T}} = \hat{\boldsymbol{\beta}}_{\mathcal{T}} + \mathbf{C}\mathbf{y}$, such that

$$\operatorname{var}(\check{eta}_{\mathcal{T}}) = \operatorname{var}(\hat{eta}_{\mathcal{T}}) + \operatorname{var}(\mathbf{Cy}) + 2 \operatorname{cov}(\hat{eta}_{\mathcal{T}}, \mathbf{Cy}).$$

By [A1] and [A2](i), $\mathbb{E}(\check{\boldsymbol{\beta}}_{\mathcal{T}}) = \boldsymbol{\beta}_o + \mathbf{C}\mathbf{X}\boldsymbol{\beta}_o$, which is unbiased iff $\mathbf{C}\mathbf{X} = \mathbf{0}$.

Proof (cont'd): The condition CX = 0 implies $cov(\hat{\beta}_T, Cy) = 0$. Thus,

$$\operatorname{var}(\check{\boldsymbol{\beta}}_{\mathcal{T}}) = \operatorname{var}(\hat{\boldsymbol{\beta}}_{\mathcal{T}}) + \operatorname{var}(\mathbf{Cy}) = \operatorname{var}(\hat{\boldsymbol{\beta}}_{\mathcal{T}}) + \sigma_o^2 \mathbf{CC'}.$$

This shows that $\operatorname{var}(\check{\boldsymbol{\beta}}_{\mathcal{T}}) - \operatorname{var}(\hat{\boldsymbol{\beta}}_{\mathcal{T}})$ is a p.s.d. matrix $\sigma_o^2 \mathbf{C} \mathbf{C}'$, so that $\hat{\boldsymbol{\beta}}_{\mathcal{T}}$ is more efficient than any linear unbiased estimator $\check{\boldsymbol{\beta}}_{\mathcal{T}}$.

Example: $\mathbb{E}(\mathbf{y}) = \mathbf{X}_1 \mathbf{b}_1$ and $var(\mathbf{y}) = \sigma_o^2 \mathbf{I}_T$. Two specification:

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{e}.$$

with the OLS estimator $\hat{\mathbf{b}}_{1,\mathcal{T}}$, and

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + \mathbf{e} = \mathbf{X}_1 \boldsymbol{eta}_1 + \mathbf{X}_2 \boldsymbol{eta}_2 + \mathbf{e}.$$

with the OLS estimator $\hat{\boldsymbol{\beta}}_{\mathcal{T}} = (\hat{\boldsymbol{\beta}}'_{1,\mathcal{T}} \ \hat{\boldsymbol{\beta}}'_{2,\mathcal{T}})'$. Clearly, $\hat{\boldsymbol{b}}_{1,\mathcal{T}}$ is the BLUE of \boldsymbol{b}_1 with $\operatorname{var}(\hat{\boldsymbol{b}}_{1,\mathcal{T}}) = \sigma_o^2 (\boldsymbol{X}'_1 \boldsymbol{X}_1)^{-1}$. By the Frisch-Waugh-Lovell Theorem,

$$\begin{split} & \mathbb{E}(\hat{\boldsymbol{\beta}}_{1,\mathcal{T}}) = \mathbb{E}\left([\mathbf{X}_{1}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{2})\mathbf{X}_{1}]^{-1}\mathbf{X}_{1}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{2})\mathbf{y} \right) = \mathbf{b}_{1}, \\ & \mathbb{E}(\hat{\boldsymbol{\beta}}_{2,\mathcal{T}}) = \mathbb{E}\left([\mathbf{X}_{2}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{1})\mathbf{X}_{2}]^{-1}\mathbf{X}_{2}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{1})\mathbf{y} \right) = \mathbf{0}. \end{split}$$

That is, $\hat{\boldsymbol{\beta}}_{\mathcal{T}}$ is unbiased for $(\mathbf{b}'_1 \ \mathbf{0}')'$.

Example (cont'd):

$$\begin{aligned} \operatorname{var}(\hat{\boldsymbol{\beta}}_{1,\mathcal{T}}) &= \operatorname{var}([\mathbf{X}_{1}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{2})\mathbf{X}_{1}]^{-1}\mathbf{X}_{1}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{2})\mathbf{y}) \\ &= \sigma_{o}^{2}[\mathbf{X}_{1}'(\mathbf{I}_{\mathcal{T}} - \mathbf{P}_{2})\mathbf{X}_{1}]^{-1}. \end{aligned}$$

As $\mathbf{X}'_1 \mathbf{X}_1 - \mathbf{X}'_1 (\mathbf{I}_T - \mathbf{P}_2) \mathbf{X}_1 = \mathbf{X}'_1 \mathbf{P}_2 \mathbf{X}_1$ is p.s.d., it follows that $[\mathbf{X}'_1 (\mathbf{I}_T - \mathbf{P}_2) \mathbf{X}_1]^{-1} - (\mathbf{X}'_1 \mathbf{X}_1)^{-1}$ is p.s.d. This shows that $\hat{\mathbf{h}}_1$ is more efficient than $\hat{\boldsymbol{d}}_2$ as it is

is p.s.d. This shows that $\hat{\mathbf{b}}_{1,T}$ is more efficient than $\hat{\boldsymbol{\beta}}_{1,T}$, as it ought to be.

With Normality

• Under [A3] that $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}_o, \sigma_o^2 \mathbf{I}_T)$, the log-likelihood function of \mathbf{y} is

$$\log L(\boldsymbol{\beta}, \sigma^2) = -\frac{T}{2} \log(2\pi) - \frac{T}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

• The score vector is

$$\mathbf{s}(\boldsymbol{\beta}, \sigma^2) = \left[\begin{array}{c} \frac{1}{\sigma^2} \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \\ -\frac{T}{2\sigma^2} + \frac{1}{2\sigma^4} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \end{array} \right]$$

Solutions to s(β, σ²) = 0 are the (quasi) maximum likelihood estimators (MLEs). Clearly, the MLE of β is the OLS estimator, and the MLE of σ² is

$$\tilde{\sigma}_{\mathcal{T}}^2 = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{\mathcal{T}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{\mathcal{T}})}{\mathcal{T}} = \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{\mathcal{T}} \neq \hat{\sigma}_{\mathcal{T}}^2.$$

38 / 100

.

With the normality condition on \mathbf{y} , a lot more can be said about the OLS estimators.

Theorem 3.7

Given the linear specification (1), suppose that [A1] and [A3] hold.

(a)
$$\hat{\boldsymbol{\beta}}_{T} \sim \mathcal{N}(\boldsymbol{\beta}_{o}, \sigma_{o}^{2}(\mathbf{X}'\mathbf{X})^{-1}).$$

(b) $(T-k)\hat{\sigma}_{T}^{2}/\sigma_{o}^{2} \sim \chi^{2}(T-k).$
(c) $\hat{\sigma}_{T}^{2}$ has mean σ_{o}^{2} and variance $2\sigma_{o}^{4}/(T-k).$

Proof: For (a), we note that $\hat{\boldsymbol{\beta}}_{T}$ is a linear transformation of $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}_{o}, \sigma_{o}^{2}\mathbf{I}_{T})$ and hence also a normal random vector. As for (b), writing $\hat{\mathbf{e}} = (\mathbf{I}_{T} - \mathbf{P})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})$, we have

$$(T-k)\hat{\sigma}_T^2/\sigma_o^2 = \hat{\mathbf{e}}'\hat{\mathbf{e}}/\sigma_o^2 = \mathbf{y}^{*\prime}(\mathbf{I}_T - \mathbf{P})\mathbf{y}^*,$$

where $\mathbf{y}^* = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_o) / \sigma_o \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_T)$ by [A3].

Proof (cont'd): Let **C** orthogonally diagonalizes $I_T - P$ such that $C'(I_T - P)C = \Lambda$. Since rank $(I_T - P) = T - k$, Λ contains T - k eigenvalues equal to one and k eigenvalues equal to zero. Then,

$$\mathbf{y}^{*\prime}(\mathbf{I}_{T}-\mathbf{P})\mathbf{y}^{*}=\mathbf{y}^{*\prime}\mathbf{C}[\mathbf{C}^{\prime}(\mathbf{I}_{T}-\mathbf{P})\mathbf{C}]\mathbf{C}^{\prime}\mathbf{y}^{*}=\eta^{\prime}\left[egin{array}{cc} \mathbf{I}_{T-k} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}
ight]\eta.$$

where $\eta = \mathbf{C}' \mathbf{y}^*$. As $\eta \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_T)$, η_i are independent, standard normal random variables. It follows that

$$\mathbf{y}^{*\prime}(\mathbf{I}_{T}-\mathbf{P})\mathbf{y}^{*}=\sum_{i=1}^{T-k}\eta_{i}^{2}\sim\chi^{2}(T-k),$$

proving (b). (c) is a direct consequence of (b) and the facts that $\chi^2(T-k)$ has mean T-k and variance 2(T-k).

Theorem 3.8

Given the linear specification (1), suppose that [A1] and [A3] hold. Then the OLS estimators $\hat{\beta}_T$ and $\hat{\sigma}_T^2$ are the best unbiased estimators (BUE) for β_o and σ_o^2 , respectively.

Proof: The Hessian matrix of the log-likelihood function is

$$\mathbf{H}(\boldsymbol{\beta}, \sigma^2) = \begin{bmatrix} -\frac{1}{\sigma^2} \mathbf{X}' \mathbf{X} & -\frac{1}{\sigma^4} \mathbf{X}' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \\ -\frac{1}{\sigma^4} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' \mathbf{X} & \frac{T}{2\sigma^4} - \frac{1}{\sigma^6} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \end{bmatrix}$$

Under [A3], $\mathbb{E}[\mathbf{s}(\boldsymbol{\beta}_o,\sigma_o^2)]=\mathbf{0}$ and

$$\mathbb{E}[\mathbf{H}(\boldsymbol{\beta}_{o}, \sigma_{o}^{2})] = \begin{bmatrix} -\frac{1}{\sigma_{o}^{2}}\mathbf{X}'\mathbf{X} & \mathbf{0} \\ \mathbf{0} & -\frac{T}{2\sigma_{o}^{4}} \end{bmatrix}$$

Proof (cont'd):

By the information matrix equality, $-\mathbb{E}[\mathbf{H}(\beta_o, \sigma_o^2)]$ is the information matrix. Then, its inverse,

$$-\mathbb{E}[\mathbf{H}(\boldsymbol{\beta}_{o},\sigma_{o}^{2})]^{-1} = \begin{bmatrix} \sigma_{o}^{2}(\mathbf{X}'\mathbf{X})^{-1} & \mathbf{0} \\ \mathbf{0} & \frac{2\sigma_{o}^{4}}{T} \end{bmatrix},$$

is the Cramér-Rao lower bound.

- $\operatorname{var}(\hat{\beta}_{T})$ achieves this lower bound (the upper-left block) so that $\hat{\beta}_{T}$ is the best unbiased estimator for β_{o} . This conclusion is much stronger than the Gauss-Markov Theorem.
- Although var(∂²_T) = 2σ⁴_o/(T − k) is greater than the lower bound (lower-right element), it can be shown that ∂²_T is still the best unbiased estimator for σ²_o; see Rao (1973, p. 319) for a proof.

Tests for Linear Hypotheses

- Linear hypothesis: R\$\beta_o = r\$, where R is \$q \times k\$ with full row rank \$q\$ and \$q < k\$, r is a vector of hypothetical values.
- A natural way to construct a test statistic is to compare Rβ_T and r; we reject the null if their difference is too "large."
- Given [A1] and [A3], Theorem 3.7(a) states:

$$\hat{\boldsymbol{\beta}}_{T} \sim \mathcal{N} \big(\boldsymbol{\beta}_{o}, \sigma_{o}^{2} (\mathbf{X}' \mathbf{X})^{-1} \big),$$

so that

$$\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} \sim \mathcal{N}(\mathbf{R}\boldsymbol{\beta}_{o}, \sigma_{o}^{2}[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']).$$

The comparison between $\mathbf{R}\hat{\boldsymbol{\beta}}_{T}$ and r is based on this distribution.

When q = 1, $\mathbf{R}\hat{\boldsymbol{\beta}}_{T}$ and $\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'$ are scalars. Under the null hypothesis,

$$\frac{\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r}}{\sigma_o[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{1/2}} = \frac{\mathbf{R}(\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \boldsymbol{\beta}_o)}{\sigma_o[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{1/2}} \sim \mathcal{N}(0, 1).$$

As σ_o^2 is unknown, the statistic above is not operational. By replacing σ_o with $\hat{\sigma}_T$, we obtain the so-called *t* statistic:

$$\tau = \frac{\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r}}{\hat{\sigma}_{\mathcal{T}}[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{1/2}}.$$

Theorem 3.9

Given the linear specification (1), suppose that [A1] and [A3] hold. When **R** is $1 \times k$, $\tau \sim t(T - k)$ under the null hypothesis.

Note: The normality condition [A3] is crucial for this *t* distribution result.

Proof: We write the statistic τ as

$$\tau = \frac{\mathbf{R}\hat{\boldsymbol{\beta}}_T - \mathbf{r}}{\sigma_o[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{1/2}} / \sqrt{\frac{(T-k)\hat{\sigma}_T^2/\sigma_o^2}{T-k}},$$

where the numerator is $\mathcal{N}(0,1)$ and $(\mathcal{T}-k)\hat{\sigma}_{\mathcal{T}}^2/\sigma_o^2$ is $\chi^2(\mathcal{T}-k)$ by Theorem 3.7(b). The assertion follows when the numerator and denominator are independent. This is indeed the case, because $\hat{\beta}_{\mathcal{T}}$ and $\hat{\mathbf{e}}$ are jointly normally distributed with

$$\begin{aligned} \operatorname{cov}(\hat{\mathbf{e}}, \hat{\boldsymbol{\beta}}_{T}) &= \mathbb{E}[(\mathbf{I}_{T} - \mathbf{P})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})\mathbf{y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}] \\ &= (\mathbf{I}_{T} - \mathbf{P})\mathbb{E}[(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{o})\mathbf{y}']\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma_{o}^{2}(\mathbf{I}_{T} - \mathbf{P})\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \mathbf{0}. \end{aligned}$$

Examples

To test $\beta_i = c$, let $\mathbf{R} = [0 \cdots 0 \ 1 \ 0 \cdots 0]$ and m^{ij} be the (i, j)th element of $\mathbf{M}^{-1} = (\mathbf{X}'\mathbf{X})^{-1}$. Then, the resulting *t* statistic is:

$$\tau = \frac{\hat{\beta}_{i,T} - c}{\hat{\sigma}_T \sqrt{m^{ii}}} \sim t(T - k),$$

where $m^{ii} = \mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'$. For testing $\beta_i = 0$, τ is also referred to as the *t* ratio.

It is straightforward to verify that to test $a\beta_i + b\beta_j = c$, with a, b, c given constants, the corresponding t statistic reads:

$$\tau = \frac{a\hat{\beta}_{i,T} + b\hat{\beta}_{j,T} - c}{\hat{\sigma}_T \sqrt{[a^2 m^{ii} + b^2 m^{jj} + 2abm^{ij}]}} \sim t(T - k).$$

When **R** is a $q \times k$ matrix with full row rank q (q > 1), we have under the null hypothesis: $[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1/2}(\mathbf{R}\hat{\boldsymbol{\beta}}_{T} - \mathbf{r})/\sigma_{o} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{q})$. Hence,

$$(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}}-\mathbf{r})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}}-\mathbf{r})/\sigma_o^2 \sim \chi^2(q).$$

The so-called F test statistic is:

$$\varphi = \frac{(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r})}{\hat{\sigma}_{\mathcal{T}}^2 q}.$$

It is easy to verify that

$$\rho = \frac{(\mathbf{R}\hat{\boldsymbol{\beta}}_T - \mathbf{r})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_T - \mathbf{r})/(\sigma_o^2 q)}{(T - k)\hat{\sigma}_T^2/[\sigma_o^2(T - k)]},$$

where both the numerator and denominator are χ^2 variables divided by their corresponding degrees of freedom.

Theorem 3.10

Given the linear specification (1), suppose that [A1] and [A3] hold. When **R** is $q \times k$ with full row rank, $\varphi \sim F(q, T - k)$ under the null hypothesis.

Notes:

- When q = 1, φ ~ F(1, T k), and this distribution is the same as that of τ².
- Note that t distribution is symmetric about zero. Hence one may consider one- or two-sided t test. On the other hand, F distribution is non-negative and asymmetric, it is more typical to consider only one-sided F test.

3

Example: $H_o: \beta_1 = b_1$ and $\beta_2 = b_2$. The *F* statistic,

$$\varphi = \frac{1}{2\hat{\sigma}_{T}^{2}} \begin{pmatrix} \hat{\beta}_{1,T} - b_{1} \\ \hat{\beta}_{2,T} - b_{2} \end{pmatrix}' \begin{bmatrix} m^{11} & m^{12} \\ m^{21} & m^{22} \end{bmatrix}^{-1} \begin{pmatrix} \hat{\beta}_{1,T} - b_{1} \\ \hat{\beta}_{2,T} - b_{2} \end{pmatrix},$$

is distributed as F(2, T - k).

Example: $H_o: \beta_2 = 0$, and $\beta_3 = 0$, \cdots and $\beta_k = 0$,

$$\varphi = \frac{1}{(k-1)\hat{\sigma}_{T}^{2}} \begin{pmatrix} \hat{\beta}_{2,T} \\ \hat{\beta}_{3,T} \\ \vdots \\ \hat{\beta}_{k,T} \end{pmatrix}' \begin{bmatrix} m^{22} & m^{23} & \cdots & m^{2k} \\ m^{32} & m^{33} & \cdots & m^{3k} \\ \vdots & & \vdots \\ m^{k2} & m^{k3} & \cdots & m^{kk} \end{bmatrix}^{-1} \begin{pmatrix} \hat{\beta}_{2,T} \\ \hat{\beta}_{3,T} \\ \vdots \\ \hat{\beta}_{k,T} \end{pmatrix}$$

is distributed as F(k-1, T-k) and known as regression F test.

3

,

To examine the power of the *F* test, we evaluate the distribution of φ under the alternative hypothesis: $\mathbf{R}\beta_o = \mathbf{r} + \delta$, with **R** is a $q \times k$ matrix with rank q < k and $\delta \neq \mathbf{0}$.

Theorem 3.11

Given the linear specification (1), suppose that [A1] and [A3] hold. When ${\bf R} {\cal B}_o = {\bf r} + {\bf \delta},$

$$arphi \sim \mathsf{F}(q, \mathit{T}-k; \, \delta' \mathbf{D}^{-1} \delta, 0),$$

where $\mathbf{D} = \sigma_o^2 [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']$, and $\delta' \mathbf{D}^{-1} \delta$ is the non-centrality parameter of the numerator of φ .

Proof: When $\mathbf{R}\boldsymbol{\beta}_{o} = \mathbf{r} + \boldsymbol{\delta}$,

$$[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1/2}(\mathbf{R}\hat{\boldsymbol{\beta}}_{T}-\mathbf{r})/\sigma_{o}=\mathbf{D}^{-1/2}[\mathbf{R}(\hat{\boldsymbol{\beta}}_{T}-\boldsymbol{\beta}_{o})+\boldsymbol{\delta}],$$

which is distributed as $\mathcal{N}(\mathbf{0}, \mathbf{I}_q) + \mathbf{D}^{-1/2} \delta$. Then,

$$(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r})/\sigma_o^2 \sim \chi^2(\boldsymbol{q}; \, \boldsymbol{\delta}'\mathbf{D}^{-1}\boldsymbol{\delta}),$$

a non-central χ^2 distribution with the non-centrality parameter $\delta' \mathbf{D}^{-1} \delta$. It is also readily seen that $(T - k)\hat{\sigma}_T^2/\sigma_o^2$ is still distributed as $\chi^2(T - k)$. Similar to the argument before, these two terms are independent, so that φ has a non-central F distribution.

C.-M. Kuan (Finance & CRETA, NTU)

- Test power is determined by the non-centrality parameter $\delta' \mathbf{D}^{-1} \delta$, where δ signifies the deviation from the null. When $\mathbf{R}\beta_o$ deviates farther from the hypothetical value \mathbf{r} (i.e., δ is "large"), the non-centrality parameter $\delta' \mathbf{D}^{-1} \delta$ increases, and so does the power.
- Example: The null distribution is F(2, 20), and its critical value at 5% level is 3.49. Then for F(2, 20; ν₁, 0) with the non-centrality parameter ν₁ = 1, 3, 5, the probabilities that φ exceeds 3.49 are approximately 12.1%, 28.2%, and 44.3%, respectively.
- Example: The null distribution is F(5,60), and its critical value at 5% level is 2.37. Then for F(5,60; ν₁,0) with ν₁ = 1,3,5, the probabilities that φ exceeds 2.37 are approximately 9.4%, 20.5%, and 33.2%, respectively.

Alternative Interpretation

-

• Constrained OLS: Finding the saddle point of the Lagrangian:

$$\min_{\beta,\lambda} \frac{1}{T} (\mathbf{y} - \mathbf{X}\beta)' (\mathbf{y} - \mathbf{X}\beta) + (\mathbf{R}\beta - \mathbf{r})'\lambda,$$

where $\boldsymbol{\lambda}$ is the q imes 1 vector of Lagrangian multipliers, we have

$$\begin{split} \ddot{\boldsymbol{\lambda}}_{\mathcal{T}} &= 2[\mathbf{R}(\mathbf{X}'\mathbf{X}/\mathcal{T})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r}), \\ \ddot{\boldsymbol{\beta}}_{\mathcal{T}} &= \hat{\boldsymbol{\beta}}_{\mathcal{T}} - (\mathbf{X}'\mathbf{X}/\mathcal{T})^{-1}\mathbf{R}'\ddot{\boldsymbol{\lambda}}_{\mathcal{T}}/2. \end{split}$$

• The constrained OLS residuals are

$$\ddot{\mathbf{e}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{\mathcal{T}} + \mathbf{X}(\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}}) = \hat{\mathbf{e}} + \mathbf{X}(\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}}),$$

with
$$\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r}).$$

• The sum of squared, constrained OLS residuals are:

$$\begin{split} \ddot{\mathbf{e}}' \ddot{\mathbf{e}} &= \hat{\mathbf{e}}' \hat{\mathbf{e}} + (\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}})' \mathbf{X}' \mathbf{X} (\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}}) \\ &= \hat{\mathbf{e}}' \hat{\mathbf{e}} + (\mathbf{R} \hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r})' [\mathbf{R} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{R}']^{-1} (\mathbf{R} \hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r}), \end{split}$$

where the 2nd term on the RHS is the numerator of the F statistic. • Letting $\mathrm{ESS}_{\mathrm{c}} = \ddot{\mathbf{e}}'\ddot{\mathbf{e}}$ and $\mathrm{ESS}_{\mathrm{u}} = \hat{\mathbf{e}}'\hat{\mathbf{e}}$ we have

$$\varphi = \frac{\ddot{\mathbf{e}}'\ddot{\mathbf{e}} - \hat{\mathbf{e}}'\hat{\mathbf{e}}}{q\hat{\sigma}_{T}^{2}} = \frac{(\mathrm{ESS}_{\mathrm{c}} - \mathrm{ESS}_{\mathrm{u}})/q}{\mathrm{ESS}_{\mathrm{u}}/(T-k)},$$

suggesting that F test in effect compares the constrained and unconstrained models based on their lack-of-fitness.

• The regression F test is thus $\varphi = \frac{(R_u^2 - R_c^2)/q}{(1 - R_u^2)/(T - k)}$ which compares model fitness of the full model and the model with only a constant term.

• The sum of squared, constrained OLS residuals are:

$$\begin{split} \ddot{\mathbf{e}}'\ddot{\mathbf{e}} &= \hat{\mathbf{e}}'\hat{\mathbf{e}} + (\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}})'\mathbf{X}'\mathbf{X}(\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \ddot{\boldsymbol{\beta}}_{\mathcal{T}}) \\ &= \hat{\mathbf{e}}'\hat{\mathbf{e}} + (\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathcal{T}} - \mathbf{r}), \end{split}$$

where the 2nd term on the RHS is the numerator of the F statistic. • Letting $\mathrm{ESS}_{\mathrm{c}} = \ddot{\mathbf{e}}'\ddot{\mathbf{e}}$ and $\mathrm{ESS}_{\mathrm{u}} = \hat{\mathbf{e}}'\hat{\mathbf{e}}$ we have

$$\varphi = \frac{\ddot{\mathbf{e}}'\ddot{\mathbf{e}} - \hat{\mathbf{e}}'\hat{\mathbf{e}}}{q\hat{\sigma}_{T}^{2}} = \frac{(\mathrm{ESS}_{\mathrm{c}} - \mathrm{ESS}_{\mathrm{u}})/q}{\mathrm{ESS}_{\mathrm{u}}/(T-k)},$$

suggesting that F test in effect compares the constrained and unconstrained models based on their lack-of-fitness.

• The regression F test is thus $\varphi = \frac{(R_u^2 - R_c^2)/q}{(1 - R_u^2)/(T - k)}$ which compares model fitness of the full model and the model with only a constant term.

• A confidence interval for $\beta_{i,o}$ is the interval $(\underline{g}_{\alpha}, \overline{g}_{\alpha})$ such that

$$\mathbb{P}\{\underline{g}_{\alpha} \leq \beta_{i,o} \leq \overline{g}_{\alpha}\} = 1 - \alpha,$$

where $(1 - \alpha)$ is known as the confidence coefficient.

• Letting $c_{\alpha/2}$ be the critical value of t(T-k) with tail prob. $\alpha/2$,

$$\begin{split} \mathbb{P}\bigg\{ \left| \left(\hat{\beta}_{i,T} - \beta_{i,o} \right) / \left(\hat{\sigma}_T \sqrt{m^{ii}} \right) \right| &\leq c_{\alpha/2} \bigg\} \\ &= \mathbb{P}\bigg\{ \hat{\beta}_{i,T} - c_{\alpha/2} \hat{\sigma}_T \sqrt{m^{ii}} \leq \beta_{i,o} \leq \hat{\beta}_{i,T} + c_{\alpha/2} \hat{\sigma}_T \sqrt{m^{ii}} \bigg\} \\ &= 1 - \alpha. \end{split}$$

- The confidence region for a vector of parameters can be constructed by resorting to *F* statistic.
- For $(\beta_{1,o} = b_1, \beta_{2,o} = b_2)'$, suppose T k = 30 and $\alpha = 0.05$. Then, $F_{0.05}(2, 30) = 3.32$, and

$$\mathbb{P}\left\{\frac{1}{2\hat{\sigma}_{T}^{2}}\left(\begin{array}{c}\hat{\beta}_{1,T}-b_{1}\\\hat{\beta}_{2,T}-b_{2}\end{array}\right)'\left[\begin{array}{c}m^{11}&m^{12}\\m^{21}&m^{22}\end{array}\right]^{-1}\left(\begin{array}{c}\hat{\beta}_{1,T}-b_{1}\\\hat{\beta}_{2,T}-b_{2}\end{array}\right)\leq3.32\right\}$$

is $1 - \alpha$, which results in an ellipse with the center $(\hat{\beta}_{1,T}, \hat{\beta}_{2,T})$. Note: It is possible that (β_1, β_2) is outside the confidence box formed by individual confidence intervals but inside the joint confidence ellipse. That is, while a *t* ratio may indicate statistic significance of a coefficient, the *F* test may suggest the opposite based on the confidence region.

Part I: Estimation results with t							
const	u _t	u_{t-1}	t	\bar{R}^2	Reg <i>F</i>		
4.40	2.48			0.70	74.51**		
(4.57**)	(8.63**)						
4.41	2.41		0.01	0.69	36.11**		
(4.50**)	(5.04**)		(0.18)				
4.84		2.40		0.68	68.92**		
(5.09**)		(8.30**)					
4.84		2.35	0.01	0.67	33.37**		
(5.01**)		(4.74**)	(0.13)				

Dout I. Estimation regults with t

Note: The numbers in parentheses are *t*-ratios; ** and * stand for significance of a two-sided test at 1% and 5% levels, respectively.

C.-M. Kuan (Finance & CRETA, NTU)

const	ut	u_{t-1}	gt	g_{t-1}	t	\bar{R}^2	Reg <i>F</i>
4.20	2.50		0.02			0.69	36.09**
(2.47*)	(7.25**)		(0.14)				
4.16	2.43		0.03		0.01	0.68	23.31**
(2.39*)	(4.85**)		(0.18)		(0.21)		
5.56		2.31		-0.08		0.67	33.77**
(3.25**)		(6.70**)		(-0.51)			
5.55		2.29		-0.08	0.004	0.66	21.77**
(3.18**)		(4.40**)		(-0.49)	(0.06)		

Part II: Estimation results with t and g

F tests for the joint significance of the coefficients of g and t: 0.03 (Model 2) and 0.13 (Model 4), which are insignificant even at 10% level.

const	Ut	u_{t-1}	gt	g_{t-1}	t	t^2	\bar{R}^2/F
11.60					-0.45	0.02	0.63
(8.82**)					(-2.50^{*})	(4.16**)	28.61**
8.05	1.93				-0.46	0.02	0.78
(6.32**)	(4.62**)				(-3.34**)	(3.73**)	39.10**
7.68	1.96		0.04		-0.46	0.02	0.77
(4.42**)	(4.50**)		(0.32)		(-3.27**)	(3.68**)	28.44**
8.37		1.80			-0.43	0.01	0.75
(6.11^{**})		(3.87**)			(-2.92**)	(3.27**)	32.97**
9.03		1.74		-0.07	-0.43	0.01	0.74
(4.84**)		(3.60**)		(-0.53)	(-2.90^{**})	(3.22**)	24.18**

Part III: Estimation results with t and t^2

F tests for the joint significance of the coefficients of *g* and *t*: 5.45^* (Model 3) and 4.29^* (Model 5), which are significant at 5% level.

Selected estimation results (with more precise estimates):

$$\hat{s}_t = 8.05 + 1.93 u_t - 0.460 t + 0.0154 t^2, \quad \bar{R}^2 = 0.78;$$

 $\hat{s}_t = 8.37 + 1.80 u_{t-1} - 0.430 t + 0.0147 t^2, \quad \bar{R}^2 = 0.75$

- For the second regression, the marginal effect of u_{t-1} on s_t is 1.80, approx. 410 persons. That is, the suicide rate would increase by 1.8 when there is one percent increase of last year's unemployment rate.
- The time effect of the second regression is -0.43 + 0.0294 t, which changes with t. At 2013, the time effect is 0.54, approx. 120 persons.
- Since 1994 (about 14.6 years after 1980), there has been a natural increase of the suicide rate in Taiwan; lowering unemployment rate would help cancel out the time effect to some extent.
- The predicted and actual suicide rates in 2013 are, respectively, 17.86 and 15.3; the difference between them is 2.56, approx. 590 persons.

It is more common to have near multicollinearity: $Xa \approx 0$.

• Writing $\mathbf{X} = [\mathbf{x}_i \ \mathbf{X}_i]$, we have from the FWL Theorem that

$$\operatorname{var}(\hat{\beta}_{i,T}) = \sigma_o^2 [\mathbf{x}_i' (\mathbf{I} - \mathbf{P}_i) \mathbf{x}_i]^{-1} = \frac{\sigma_o^2}{\sum_{t=1}^T (x_{ti} - \bar{x}_i)^2 (1 - R^2(i))},$$

where $\mathbf{P}_i = \mathbf{X}_i (\mathbf{X}'_i \mathbf{X}_i)^{-1} \mathbf{X}'_i$, and $R^2(i)$ is the centered R^2 from regressing \mathbf{x}_i on \mathbf{X}_i .

• Consequence of near multicollinearity:

- R²(i) is high, so that var(β̂_{i,T}) tend to be large and that β̂_{i,T} are sensitive to data changes.
- Large $var(\hat{\beta}_{i,T})$ lead to small (insignificant) t ratios. Yet, regression F test may suggest that the model (as a whole) is useful.

How do we circumvent the problems from near multicollinearity?

- Try to break the approximate linear relation.
 - Adding more data if possible.
 - Dropping some regressors.
- Statistical approaches:
 - Ridge regression: For some $\lambda \neq 0$,

$$\hat{\mathbf{b}}_{\mathrm{ridge}} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_k)^{-1}\mathbf{X}'\mathbf{y}.$$

- Principal component regression:
- Note: Multicollinearity vs. "micronumerosity" (Goldberger)

Example: Let y_t denote the wage of the tth individual and x_t the working experience (in years). Consider the following specification:

$$y_t = \alpha_0 + \alpha_1 D_t + \beta_0 x_t + e_t,$$

where D_t is a dummy variable such that $D_t = 1$ if t is a male and $D_t = 0$ otherwise. This specification puts together two regressions:

- Regression for female: $D_t = 0$, and intercept is α_0 .
- Regression for male: $D_t = 1$, and intercept os $\alpha_0 + \alpha_1$.

These two regressions coincide if $\alpha_1 = 0$. Testing no wage discrimination against female amounts to testing the hypothesis of $\alpha_1 = 0$.

We may also consider the specification with a dummy variable and its interaction with a regressor:

$$y_t = \alpha_0 + \alpha_1 D_t + \beta_0 x_t + \beta_1 (x_t D_t) + e_t.$$

Then, the slopes of the regressions for female and male are, respectively, β_0 and $\beta_0 + \beta_1$. These two regressions coincide if $\alpha_1 = 0$ and $\beta_1 = 0$. In this case, testing no wage discrimination against female amounts to testing the joint hypothesis of $\alpha_1 = 0$ and $\beta_1 = 0$.

Example: Consider two dummy variables:

 $D_{1,t} = 1$ if high school is t's highest degree and $D_{1,t=0}$ otherwise; $D_{2t} = 1$ if college or graduate is t's highest degree and $D_{2t=0}$ otherwise. The specification below in effect puts together 3 regressions:

$$y_t = \alpha_0 + \alpha_1 D_{1,t} + \alpha_2 D_{2,t} + \beta x_t + e_t,$$

where below-high-school regression has intercepts α_0 , high-school regression has intercept $\alpha_0 + \alpha_1$, college regression has intercept $\alpha_0 + \alpha_2$. Similar to the previous example, we may also consider a more general specification in which x interacts with D_1 and D_2 .

Dummy variable trap: To avoid exact multicollinearity, the number of dummy variables in a model (with the constant term) should be one less than the number of groups.

Example: Analysis of Suicide Rate

Let $D_t = 1$ for $t = T^* + 1, ..., T$ and $D_t = 0$ otherwise, where T^* is the year of structure change. Consider the specification:

$$s_t = \alpha_0 + \delta D_t + \beta_0 u_{t-1} + \gamma u_{t-1} D_t + e_t.$$

The "before-change" regression has the intercept α_0 and slope β_0 , and the "after-change" regression has the intercept $\alpha_0 + \delta$ and slope $\beta_0 + \gamma$. Testing a structure change at T^* amounts to testing $\delta = 0$ and $\gamma = 0$ (Chow test).

Alternatively, we can estimate the specification:

$$s_t = \alpha_0(1 - D_t) + \alpha_1 D_t + \beta_0 u_{t-1}(1 - D_t) + \beta_1 u_{t-1} D_t + e_t,$$

and test a structure change at T^* by checking if $\alpha_0 = \alpha_1$ and $\beta_0 = \beta_1$.

<i>T</i> *	const	D_t	u_{t-1}	$u_{t-1}D_t$	$ar{R}^2/{ m Reg}~F$	Chow
1992	6.94	-2.82	1.42	1.17	0.67	0.50
	(2.85**)	(-1.00)	(1.20)	(0.94)	22.56**	
1993	6.07	-1.39	1.75	0.71	0.66	0.17
	(2.58*)	(-0.49)	(1.51)	(0.57)	21.86**	
1994	5.58	-0.35	1.94	0.39	0.66	0.14
	(2.48*)	(-0.12)	(1.72)	(0.32)	21.80**	
1995	5.36	0.51	2.02	0.16	0.66	0.26
	(2.46*)	(0.17)	(1.83)	(0.13)	22.05**	

Part I: Estimation results with a known change: Without t

Chow test is the F test of the coefficients of D_t and $u_{t-1}D_t$ being zero.

Part II: Estimation results with a known change: With t

<i>T</i> *	const	D_t	u_{t-1}	t	tDt	$\bar{R}^2/{ m Reg}~F$
1992	11.11	-10.41	1.08	-0.54	0.92	0.83
	(8.30**)	(-5.09**)	(2.52*)	(-4.00**)	(5.45**)	40.21**
1993	11.11	-9.97	1.05	-0.52	0.90	0.83
	(8.47**)	(-4.79**)	(2.47*)	(-4.42^{**})	(5.63**)	41.09**
1994	11.05	-9.46	0.97	-0.48	0.85	0.83
	(8.42**)	(-4.41^{**})	(2.25*)	(-4.48**)	(5.53**)	40.60**
1995	10.92	-8.78	0.89	-0.43	0.79	0.83
	(8.19**)	(-3.92**)	(1.98)	(-4.32**)	(5.26**)	38.98**

F test of the coefficients of D_t and tD_t being zero: 15.28^{**} ('92); 15.83^{**} ('93); 15.52^{**} ('94); 14.51^{**} ('95)

We do not know T^* , the year of change, and hence tried estimating with different T^* :

$$\begin{split} T^* &= 1992: \hat{s}_t = 11.11 - 10.41 \, D_t + 1.08 \, u_{t-1} - 0.54 \, t + 0.92 \, t D_t; \\ T^* &= 1993: \hat{s}_t = 11.11 - 9.97 \, D_t + 1.05 \, u_{t-1} - 0.52 \, t + 0.90 \, t D_t; \\ T^* &= 1994: \hat{s}_t = 11.05 - 9.46 \, D_t + 0.97 \, u_{t-1} - 0.48 \, t + 0.85 \, t D_t; \\ T^* &= 1995: \hat{s}_t = 10.92 - 8.78 \, D_t + 0.89 \, u_{t-1} - 0.43 \, t + 0.79 \, t D_t. \end{split}$$

- Consider the regression with $T^* = 1994$. The "before-change" and "after-change" slopes are -0.48 (a decrease over time) and 0.37 (an increase over time), respectively. The marginal effect of u_{t-1} on s_t is significant at 5% level.
- The regression line with T* = 1994 predicts the suicide rate in 2013 as 17.8; the difference between the predicted and actual suicide rates is 2.5, approximately 570 persons.

- [A1] **X** is non-stochastic: Economic variables can **not** be regarded as non-stochastic; also, lagged dependent variables may be used as regressors.
- [A2](i) E(y) = Xβ_o: E(y) may be a linear function with more regressors or a nonlinear function of regressors.
- [A2](ii) var(y) = σ_o²I_T: The elements of y may be correlated (serial correlation, spatial correlation) and/or may have unequal variances.
- [A3] Normality: **y** may have a non-normal distribution.
- The OLS estimator loses the properties derived before when some of the classical conditions fail to hold.

Given the linear specification $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, suppose, in addition to [A1] and [A2](i), $\operatorname{var}(\mathbf{y}) = \mathbf{\Sigma}_o \neq \sigma_o^2 \mathbf{I}_T$, where $\mathbf{\Sigma}_o$ is p.d. That is, the elements of \mathbf{y} may be correlated and have unequal variances.

 ${\, \bullet \, }$ The OLS estimator $\hat{\beta}_{\mathcal{T}}$ remains unbiased with

$$\mathsf{var}(\hat{oldsymbol{eta}}_{\mathcal{T}}) = \mathsf{var}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{\Sigma}_{o}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}.$$

- $\hat{\beta}_{T}$ is not the BLUE for β_{o} , and it is not the BUE for β_{o} under normality.
- The estimator var(β_T) = ∂²_T(X'X)⁻¹ is a biased estimator for var(β_T). Consequently, the t and F tests do not have t and F distributions, even when y is normally distributed.

Consider the specification: $\mathbf{G}\mathbf{y} = \mathbf{G}\mathbf{X}\boldsymbol{\beta} + \mathbf{G}\mathbf{e}$, where \mathbf{G} is nonsingular and non-stochastic.

- $\mathbb{E}(\mathbf{G}\mathbf{y}) = \mathbf{G}\mathbf{X}\boldsymbol{\beta}_o$ and $\operatorname{var}(\mathbf{G}\mathbf{y}) = \mathbf{G}\mathbf{\Sigma}_o\mathbf{G}'$.
- GX has full column rank so that the OLS estimator can be computed:

$\mathbf{b}(\mathbf{G}) = (\mathbf{X}'\mathbf{G}'\mathbf{G}\mathbf{X})^{-1}\mathbf{X}'\mathbf{G}'\mathbf{G}\mathbf{y},$

which is still linear and unbiased. It would be the BLUE provided that **G** is chosen such that $\mathbf{G}\boldsymbol{\Sigma}_{o}\mathbf{G}' = \sigma_{o}^{2}\mathbf{I}_{T}$. • Setting $\mathbf{G} = \boldsymbol{\Sigma}_{o}^{-1/2}$, where $\boldsymbol{\Sigma}_{o}^{-1/2} = \mathbf{C}\boldsymbol{\Lambda}^{-1/2}\mathbf{C}'$ and **C** orthogonally diagonalizes $\boldsymbol{\Sigma}_{o}$: $\mathbf{C}'\boldsymbol{\Sigma}_{o}\mathbf{C} = \boldsymbol{\Lambda}$, we have $\boldsymbol{\Sigma}_{o}^{-1/2}\boldsymbol{\Sigma}_{o}\boldsymbol{\Sigma}_{o}^{-1/2'} = \mathbf{I}_{T}$.

• With
$$\mathbf{y}^* = \mathbf{\Sigma}_o^{-1/2} \mathbf{y}$$
 and $\mathbf{X}^* = \mathbf{\Sigma}_o^{-1/2} \mathbf{X}$, we have the GLS estimator:

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = (\mathbf{X}^{*\prime}\mathbf{X}^{*})^{-1}\mathbf{X}^{*\prime}\mathbf{y}^{*} = (\mathbf{X}^{\prime}\boldsymbol{\Sigma}_{o}^{-1}\mathbf{X})^{-1}(\mathbf{X}^{\prime}\boldsymbol{\Sigma}_{o}^{-1}\mathbf{y}).$$
(5)

• The $\hat{m{eta}}_{
m GLS}$ is a minimizer of weighted sum of squared errors:

$$Q(\beta; \boldsymbol{\Sigma}_{o}) = \frac{1}{T} (\mathbf{y}^{*} - \mathbf{X}^{*} \beta)' (\mathbf{y}^{*} - \mathbf{X}^{*} \beta) = \frac{1}{T} (\mathbf{y} - \mathbf{X} \beta)' \boldsymbol{\Sigma}_{o}^{-1} (\mathbf{y} - \mathbf{X} \beta).$$

• The vector of GLS fitted values, $\hat{\mathbf{y}}_{\text{GLS}} = \mathbf{X}(\mathbf{X}' \mathbf{\Sigma}_o^{-1} \mathbf{X})^{-1} (\mathbf{X}' \mathbf{\Sigma}_o^{-1} \mathbf{y})$, is an oblique projection of \mathbf{y} onto span(\mathbf{X}), because $\mathbf{X}(\mathbf{X}' \mathbf{\Sigma}_o^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Sigma}_o^{-1}$ is idempotent but asymmetric. The GLS residual vector is $\hat{\mathbf{e}}_{\text{GLS}} = \mathbf{y} - \hat{\mathbf{y}}_{\text{GLS}}$.

• The sum of squared OLS residuals is less than the sum of squared GLS residuals. (Why?)

Stochastic Properties of the GLS Estimator

Theorem 4.1 (Aitken)

Given linear specification (1), suppose that [A1] and [A2](i) hold and that $var(\mathbf{y}) = \mathbf{\Sigma}_o$ is positive definite. Then, $\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}$ is the BLUE for $\boldsymbol{\beta}_o$.

• Given [A3']
$$\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}_o, \mathbf{\Sigma}_o)$$
,

$$\hat{\boldsymbol{\beta}}_{\mathrm{GLS}} \sim \mathcal{N} \big(\boldsymbol{\beta}_o, (\mathbf{X}' \mathbf{\Sigma}_o^{-1} \mathbf{X})^{-1} \big).$$

• Under [A3'], the log likelihood function is

$$\log L(\beta; \boldsymbol{\Sigma}_o) = -\frac{T}{2} \log(2\pi) - \frac{1}{2} \log(\det(\boldsymbol{\Sigma}_o)) - \frac{1}{2} (\mathbf{y} - \mathbf{X}\beta)' \boldsymbol{\Sigma}_o^{-1} (\mathbf{y} - \mathbf{X}\beta),$$

with the FOC: $\mathbf{X}' \mathbf{\Sigma}_o^{-1} (\mathbf{y} - \mathbf{X}\beta) = \mathbf{0}$. Thus, the GLS estimator is also the MLE under normality.

• Under normality, the information matrix is

$$\mathbb{E}[\mathsf{X}'\mathbf{\Sigma}_o^{-1}(\mathsf{y}-\mathsf{X}\beta)(\mathsf{y}-\mathsf{X}\beta)'\mathbf{\Sigma}_o^{-1}\mathsf{X}]\Big|_{\beta=\beta_o}=\mathsf{X}'\mathbf{\Sigma}_o^{-1}\mathsf{X}.$$

Thus, the GLS estimator is the BUE for β_o , because its covariance matrix reaches the Crámer-Rao lower bound.

.

• Under the null hypothesis $\mathbf{R}\boldsymbol{\beta}_{o} = \mathbf{r}$, we have

$$(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}-\mathbf{r})'[\mathbf{R}(\mathbf{X}'\boldsymbol{\Sigma}_{o}^{-1}\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}-\mathbf{r})\sim\chi^{2}(q).$$

A major difficulty: How should the GLS estimator be computed when Σ_o is unknown?

• Under normality, the information matrix is

$$\mathbb{E}[\mathsf{X}'\mathbf{\Sigma}_o^{-1}(\mathsf{y}-\mathsf{X}\beta)(\mathsf{y}-\mathsf{X}\beta)'\mathbf{\Sigma}_o^{-1}\mathsf{X}]\Big|_{\beta=\beta_o}=\mathsf{X}'\mathbf{\Sigma}_o^{-1}\mathsf{X}.$$

Thus, the GLS estimator is the BUE for β_o , because its covariance matrix reaches the Crámer-Rao lower bound.

• Under the null hypothesis $\mathbf{R}\boldsymbol{\beta}_o = \mathbf{r}$, we have

$$(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}-\mathbf{r})'[\mathbf{R}(\mathbf{X}'\boldsymbol{\Sigma}_{o}^{-1}\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}-\mathbf{r})\sim\chi^{2}(q).$$

A major difficulty: How should the GLS estimator be computed when Σ_o is unknown?

• The Feasible GLS (FGLS) estimator is

$$\hat{\boldsymbol{\beta}}_{\mathrm{FGLS}} = (\mathbf{X}' \widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}^{-1} \mathbf{X})^{-1} \mathbf{X}' \widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}^{-1} \mathbf{y},$$

where $\widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}$ is an estimator of $\boldsymbol{\Sigma}_{o}$.

• Further difficulties in FGLS estimation:

- The number of parameters in Σ_o is T(T + 1)/2. Estimating Σ_o without some prior restrictions on Σ_o is practically infeasible.
- Even when an estimator $\hat{\Sigma}_{T}$ is available under certain assumptions, $\hat{\beta}_{\rm FGLS}$ is a complex function of the data y and X. As such, the finite-sample properties of the FGLS estimator are typically difficult to derive.

• The Feasible GLS (FGLS) estimator is

$$\hat{\boldsymbol{\beta}}_{\mathrm{FGLS}} = (\mathbf{X}' \widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}^{-1} \mathbf{X})^{-1} \mathbf{X}' \widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}^{-1} \mathbf{y},$$

where $\widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}$ is an estimator of $\boldsymbol{\Sigma}_{o}$.

- Further difficulties in FGLS estimation:
 - The number of parameters in Σ_o is T(T + 1)/2. Estimating Σ_o without some prior restrictions on Σ_o is practically infeasible.
 - Even when an estimator $\hat{\Sigma}_T$ is available under certain assumptions, $\hat{\beta}_{\rm FGLS}$ is a complex function of the data y and X. As such, the finite-sample properties of the FGLS estimator are typically difficult to derive.

• The Feasible GLS (FGLS) estimator is

$$\hat{\boldsymbol{\beta}}_{\mathrm{FGLS}} = (\mathbf{X}' \widehat{\boldsymbol{\Sigma}}_{T}^{-1} \mathbf{X})^{-1} \mathbf{X}' \widehat{\boldsymbol{\Sigma}}_{T}^{-1} \mathbf{y},$$

where $\widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}$ is an estimator of $\boldsymbol{\Sigma}_{o}$.

- Further difficulties in FGLS estimation:
 - The number of parameters in Σ_o is T(T + 1)/2. Estimating Σ_o without some prior restrictions on Σ_o is practically infeasible.
 - Even when an estimator $\widehat{\Sigma}_{\mathcal{T}}$ is available under certain assumptions, $\hat{\beta}_{\rm FGLS}$ is a complex function of the data **y** and **X**. As such, the finite-sample properties of the FGLS estimator are typically difficult to derive.

- In the classical literature, the feasible GLS estimation is based on some assumptions on Σ_o . These assumptions are needed to reduce the number of parameters and hence render the estimation of Σ_o feasible.
- The subsections below deal with the estimation under some special assumptions, which are imposed on either the diagonal or off-diagonal terms of Σ_o but not both.
- Although the assumptions on Σ_o are weaker than the condition of $\Sigma_o = \sigma_o^2 I_T$, they are very ad hoc and can not be easily generalized.

A simple form of Σ_o is

$$\boldsymbol{\Sigma}_{\boldsymbol{o}} = \begin{bmatrix} \sigma_1^2 \boldsymbol{\mathsf{I}}_{\mathcal{T}_1} & \boldsymbol{\mathsf{0}} \\ \boldsymbol{\mathsf{0}} & \sigma_2^2 \boldsymbol{\mathsf{I}}_{\mathcal{T}_2} \end{bmatrix},$$

with $T = T_1 + T_2$; this is known as groupwise heteroskedasticity.

- The null hypothesis of homoskedasticity: $\sigma_1^2 = \sigma_2^2 = \sigma_o^2$.
- Perform separate OLS regressions using the data in each group and obtain the variance estimates $\hat{\sigma}_{T_1}^2$ and $\hat{\sigma}_{T_2}^2$.
- Under [A1] and [A3'], the F test is:

$$\varphi := \frac{\hat{\sigma}_{T_1}^2}{\hat{\sigma}_{T_2}^2} = \frac{(T_1 - k)\hat{\sigma}_{T_1}^2}{\sigma_o^2(T_1 - k)} \left/ \frac{(T_2 - k)\hat{\sigma}_{T_2}^2}{\sigma_o^2(T_2 - k)} \sim F(T_1 - k, T_2 - k). \right.$$

- More generally, for some constants $c_0, c_1 > 0$, $\sigma_t^2 = c_0 + c_1 x_{ti}^2$.
- The Goldfeld-Quandt test:
 - (1) Rearrange obs. according to the values of x_j in a descending order.
 - (2) Divide the rearranged data set into three groups with T_1 , T_m , and T_2 observations, respectively.
 - (3) Drop the T_m observations in the middle group and perform separate OLS regressions using the data in the first and third groups.
 - (4) The statistic is the ratio of the variance estimates:

$$\hat{\sigma}_{T_1}^2/\hat{\sigma}_{T_2}^2 \sim F(T_1-k, T_2-k).$$

- Some questions:
 - Can we estimate the model with all observations and then compute $\hat{\sigma}_{T_1}^2$ and $\hat{\sigma}_{T_2}^2$ based on T_1 and T_2 residuals?
 - If Σ_o is not diagonal, does the F test above still work?

- More generally, for some constants $c_0, c_1 > 0$, $\sigma_t^2 = c_0 + c_1 x_{ti}^2$.
- The Goldfeld-Quandt test:
 - (1) Rearrange obs. according to the values of x_j in a descending order.
 - (2) Divide the rearranged data set into three groups with T_1 , T_m , and T_2 observations, respectively.
 - (3) Drop the T_m observations in the middle group and perform separate OLS regressions using the data in the first and third groups.
 - (4) The statistic is the ratio of the variance estimates:

$$\hat{\sigma}_{T_1}^2/\hat{\sigma}_{T_2}^2 \sim F(T_1-k, T_2-k).$$

- Some questions:
 - Can we estimate the model with all observations and then compute
 ²
 _{T1}
 and
 ²
 _{T2}
 based on T₁ and T₂ residuals?
 - If Σ_o is not diagonal, does the F test above still work?

- More generally, for some constants $c_0, c_1 > 0$, $\sigma_t^2 = c_0 + c_1 x_{ti}^2$.
- The Goldfeld-Quandt test:
 - (1) Rearrange obs. according to the values of x_j in a descending order.
 - (2) Divide the rearranged data set into three groups with T_1 , T_m , and T_2 observations, respectively.
 - (3) Drop the T_m observations in the middle group and perform separate OLS regressions using the data in the first and third groups.
 - (4) The statistic is the ratio of the variance estimates:

$$\hat{\sigma}_{T_1}^2/\hat{\sigma}_{T_2}^2 \sim F(T_1-k, T_2-k).$$

- Some questions:
 - Can we estimate the model with all observations and then compute
 ²
 _{T1}
 and
 ²
 _{T2}
 based on T₁ and T₂ residuals?
 - If **Σ**_o is not diagonal, does the *F* test above still work?

GLS and FGLS Estimation

Under groupwise heteroskedasticity,

$$\boldsymbol{\Sigma}_{o}^{-1/2} = \begin{bmatrix} \sigma_{1}^{-1} \boldsymbol{I}_{\mathcal{T}_{1}} & \boldsymbol{0} \\ \boldsymbol{0} & \sigma_{2}^{-1} \boldsymbol{I}_{\mathcal{T}_{2}} \end{bmatrix},$$

so that the transformed specification is

$$\begin{bmatrix} \mathbf{y}_1/\sigma_1 \\ \mathbf{y}_2/\sigma_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1/\sigma_1 \\ \mathbf{X}_2/\sigma_2 \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} \mathbf{e}_1/\sigma_1 \\ \mathbf{e}_2/\sigma_2 \end{bmatrix}$$

Clearly, var($\mathbf{\Sigma}_o^{-1/2}\mathbf{y}$) = I $_{\mathcal{T}}$. The GLS estimator is:

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = \left[\frac{\mathbf{X}_1'\mathbf{X}_1}{\sigma_1^2} + \frac{\mathbf{X}_2'\mathbf{X}_2}{\sigma_2^2}\right]^{-1} \left[\frac{\mathbf{X}_1'\mathbf{y}_1}{\sigma_1^2} + \frac{\mathbf{X}_2'\mathbf{y}_2}{\sigma_2^2}\right]$$

٠

With $\hat{\sigma}_{T_1}^2$ and $\hat{\sigma}_{T_2}^2$ from separate regressions, an estimator of $\pmb{\Sigma}_o$ is

$$\widehat{\boldsymbol{\Sigma}} = \begin{bmatrix} \hat{\sigma}_{\mathcal{T}_1}^2 \boldsymbol{\mathsf{I}}_{\mathcal{T}_1} & \boldsymbol{\mathsf{0}} \\ \boldsymbol{\mathsf{0}} & \hat{\sigma}_{\mathcal{T}_2}^2 \boldsymbol{\mathsf{I}}_{\mathcal{T}_2} \end{bmatrix}$$

The FGLS estimator is:

$$\hat{\boldsymbol{\beta}}_{\text{FGLS}} = \left[\frac{\mathbf{X}_1'\mathbf{X}_1}{\hat{\sigma}_1^2} + \frac{\mathbf{X}_2'\mathbf{X}_2}{\hat{\sigma}_2^2}\right]^{-1} \left[\frac{\mathbf{X}_1'\mathbf{y}_1}{\hat{\sigma}_1^2} + \frac{\mathbf{X}_2'\mathbf{y}_2}{\hat{\sigma}_2^2}\right]$$

Note: If $\sigma_t^2 = c x_{tj}^2$, a transformed specification is

$$\frac{y_t}{x_{tj}} = \beta_j + \beta_1 \frac{1}{x_{tj}} + \dots + \beta_{j-1} \frac{x_{t,j-1}}{x_{tj}} + \beta_{j+1} \frac{x_{t,j+1}}{x_{tj}} + \dots + \beta_k \frac{x_{tk}}{x_{tj}} + \frac{e_t}{x_{tj}},$$

where $var(y_t/x_{tj}) = c := \sigma_o^2$. Here, the GLS estimator is readily computed as the OLS estimator for the transformed specification.

- How do we determine the "groups" for groupwise heteroskedasticity?
- What if the diagonal elements of Σ_o take multiple values (so that there are more than 2 groups)?
- A general form of heteroskedasticity: σ_t² = h(α₀ + z'_tα₁), with h unknown, z_t a p × 1 vector and p a fixed number less than T.
- When the F test rejects the null of homoskedasticity, groupwise heteroskedasticity need not be a correct description of Σ_o.
- When the form of heteroskedasticity is incorrectly specified, the resulting FGLS estimator may be less efficient than the OLS estimator.
- The finite-sample properties of FGLS estimators and hence the exact tests are typically unknown.

- When time series data y_t are correlated over time, they are said to exhibit serial correlation. For cross-section data, the correlations of y_t are known as spatial correlation.
- A general form of Σ_o is that its diagonal elements (variances of y_t) are a constant σ_o², and the off-diagonal elements (cov(y_t, y_{t-i})) are non-zero.
- In the time series context, cov(y_t, y_{t-i}) are known as the autocovariances of y_t, and the autocorrelations of y_t are

$$\operatorname{corr}(y_t, y_{t-i}) = \frac{\operatorname{cov}(y_t, y_{t-i})}{\sqrt{\operatorname{var}(y_t)}\sqrt{\operatorname{var}(y_{t-i})}} = \frac{\operatorname{cov}(y_t, y_{t-i})}{\sigma_o^2}.$$

Simple Model: AR(1) Disturbances

- A time series y_t is said to be weakly (covariance) stationary if its mean, variance, and autocovariances are all independent of t.
 - i.i.d. random variables
 - White noise: A time series with zero mean, a constant variance, and zero autocovariances.
- Disturbance: ε := y Xβ_o so that var(y) = var(ε) = 𝔼(εε').
 Suppose that ε_t follows a weakly stationary AR(1) (autoregressive of order 1) process:

$$\epsilon_t = \psi_1 \epsilon_{t-1} + u_t, \quad |\psi_1| < 1,$$

where $\{u_t\}$ is a white noise with $\mathbb{IE}(u_t) = 0$, $\mathbb{IE}(u_t^2) = \sigma_u^2$, and $\mathbb{IE}(u_t u_\tau) = 0$ for $t \neq \tau$.

By recursive substitution,

$$\epsilon_t = \sum_{i=0}^{\infty} \psi_1^i u_{t-i},$$

a weighted sum of current and previous "innovations" (shocks). This is a stationary process because:

•
$$\mathbb{E}(\epsilon_t) = 0$$
, $\operatorname{var}(\epsilon_t) = \sum_{i=0}^{\infty} \psi_1^{2i} \sigma_u^2 = \sigma_u^2/(1 - \psi_1^2)$, and
 $\operatorname{cov}(\epsilon_t, \epsilon_{t-1}) = \psi_1 \mathbb{E}(\epsilon_{t-1}^2) = \psi_1 \sigma_u^2/(1 - \psi_1^2)$,
so that $\operatorname{corr}(\epsilon_t, \epsilon_{t-1}) = \psi_1$.
• $\operatorname{cov}(\epsilon_t, \epsilon_{t-2}) = \psi_1 \operatorname{cov}(\epsilon_{t-1}, \epsilon_{t-2})$ so that $\operatorname{corr}(\epsilon_t, \epsilon_{t-2}) = \psi_1^2$. Thus,
 $\operatorname{corr}(\epsilon_t, \epsilon_{t-i}) = \psi_1 \operatorname{corr}(\epsilon_{t-1}, \epsilon_{t-i}) = \psi_1^i$,

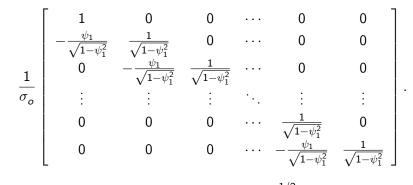
which depend only on i, but not on t.

The variance-covariance matrix $var(\mathbf{y})$ is thus

$$\boldsymbol{\Sigma}_{o} = \sigma_{o}^{2} \left[\begin{array}{ccccc} 1 & \psi_{1} & \psi_{1}^{2} & \cdots & \psi_{1}^{T-1} \\ \psi_{1} & 1 & \psi_{1} & \cdots & \psi_{1}^{T-2} \\ \psi_{1}^{2} & \psi_{1} & 1 & \cdots & \psi_{1}^{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{T-1} & \psi_{1}^{T-2} & \psi_{1}^{T-3} & \cdots & 1 \end{array} \right],$$

with $\sigma_o^2 = \sigma_u^2/(1 - \psi_1^2)$. Note that all off-diagonal elements of this matrix are non-zero, but there are only two unknown parameters.

A transformation matrix for GLS estimation is the following $\Sigma_o^{-1/2}$:



Any matrix that is a constant proportion to $\Sigma_o^{-1/2}$ can also serve as a legitimate transformation matrix for GLS estimation

The Cochrane-Orcutt Transformation is based on:

$$\mathbf{V}_{o}^{-1/2} = \sigma_{o}\sqrt{1-\psi_{1}^{2}} \mathbf{\Sigma}_{o}^{-1/2} = \begin{bmatrix} \sqrt{1-\psi_{1}^{2}} & 0 & 0 & \cdots & 0 & 0\\ -\psi_{1} & 1 & 0 & \cdots & 0 & 0\\ 0 & -\psi_{1} & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 0\\ 0 & 0 & 0 & \cdots & -\psi_{1} & 1 \end{bmatrix}$$

which depends only on the single parameter ψ_1 . The resulting transformed data are: $\mathbf{y}^* = \mathbf{V}_o^{-1/2} \mathbf{y}$ and $\mathbf{X}^* = \mathbf{V}_o^{-1/2} \mathbf{X}$ with

$$\begin{aligned} & \mathbf{y}_1^* = (1 - \psi_1^2)^{1/2} \mathbf{y}_1, \quad \mathbf{x}_1^* = (1 - \psi_1^2)^{1/2} \mathbf{x}_1, \\ & \mathbf{y}_t^* = \mathbf{y}_t - \psi_1 \mathbf{y}_{t-1}, \qquad \mathbf{x}_t^* = \mathbf{x}_t - \psi_1 \mathbf{x}_{t-1}, \qquad t = 2, \cdots, T, \end{aligned}$$

where \mathbf{x}_t is the *t*th column of \mathbf{X}' .

,

• Extension to AR(p) process:

$$\epsilon_t = \psi_1 \epsilon_{t-1} + \dots + \psi_p \epsilon_{t-p} + u_t,$$

where ψ_1, \ldots, ψ_p must be restricted to ensure weak stationarity. • MA(1) (moving average of order 1) process:

$$\epsilon_t = u_t - \pi_1 u_{t-1}, \quad |\pi_1| < 1,$$

where $\{u_t\}$ is a white noise.

•
$$\mathbb{E}(\epsilon_t) = 0$$
, $\operatorname{var}(\epsilon_t) = (1 + \pi_1^2)\sigma_u^2$.
• $\operatorname{cov}(\epsilon_t, \epsilon_{t-1}) = -\pi_1\sigma_u^2$, and $\operatorname{cov}(\epsilon_t, \epsilon_{t-i}) = 0$ for $i \ge 2$.

• MA(q) Process: $\epsilon_t = u_t - \pi_1 u_{t-1} - \dots - \pi_q u_{t-q}$.

Tests for AR(1) Disturbances

Under AR(1), the null hypothesis is $\psi_1 = 0$. A natural estimator of ψ_1 is the OLS estimator of regressing \hat{e}_t on \hat{e}_{t-1} :

$$\hat{\psi}_T = rac{\sum_{t=2}^T \hat{e}_t \hat{e}_{t-1}}{\sum_{t=2}^T \hat{e}_{t-1}^2}.$$

• The Durbin-Watson statistic is

$$d = \frac{\sum_{t=2}^{T} (\hat{e}_t - \hat{e}_{t-1})^2}{\sum_{t=1}^{T} \hat{e}_t^2}.$$

• When the sample size T is large, it can be seen that

$$d = 2 - 2\hat{\psi}_{T} \frac{\sum_{t=2}^{T} \hat{e}_{t-1}^{2}}{\sum_{t=1}^{T} \hat{e}_{t}^{2}} - \frac{\hat{e}_{1}^{2} + \hat{e}_{T}^{2}}{\sum_{t=1}^{T} \hat{e}_{t}^{2}} \approx 2(1 - \hat{\psi}_{T}).$$

- For 0 < ψ_T ≤ 1 (−1 ≤ ψ_T < 0), 0 ≤ d < 2 (2 < d ≤ 4), there may be positive (negative) serial correlation. Hence, d essentially checks whether ψ_T is "close" to zero (i.e., d is "close" to 2).
- Difficulty: The exact null distribution of *d* holds only under the classical conditions [A1] and [A3] and depends on the data matrix X. Thus, the critical values for *d* can not be tabulated, and this test is not pivotal.
- The null distribution of d lies between a lower bound (d_L) and an upper bound (d_U):

 $d_{L,\alpha}^* < d_{\alpha}^* < d_{U,\alpha}^*.$

The distributions of d_L and d_U are not data dependent, so that their critical values $d^*_{L,\alpha}$ and $d^*_{U,\alpha}$ can be tabulated.

- Durbin-Watson test:
 - (1) Reject the null if $d < d^*_{L,\alpha}$ $(d > 4 d^*_{L,\alpha})$.
 - (2) Do not reject the null if $d > d^*_{U,\alpha}$ $(d < 4 d^*_{U,\alpha})$.
 - (3) Test is inconclusive if $d_{L,\alpha}^* < d < d_{U,\alpha}^*$ $(4 d_{L,\alpha}^* > d > 4 d_{U,\alpha}^*)$.
- For the specification $y_t = \beta_1 + \beta_2 x_{t2} + \cdots + \beta_k x_{tk} + \gamma y_{t-1} + e_t$, Durbin's *h* statistic is

$$h = \hat{\gamma}_T \sqrt{\frac{T}{1 - T \widehat{\operatorname{var}}(\hat{\gamma}_T)}} \approx \mathcal{N}(0, 1),$$

where $\hat{\gamma}_{T}$ is the OLS estimate of γ with $\widehat{var}(\hat{\gamma}_{T})$ the OLS estimate of $var(\hat{\gamma}_{T})$. Note: $\widehat{var}(\hat{\gamma}_{T})$ can not be greater 1/T. (Why?)

FGLS Estimation

• Notations: Write $\Sigma(\sigma^2, \psi)$ and $V(\psi)$, so that $\Sigma_o = \Sigma(\sigma_o^2, \psi_1)$ and $V_o = V(\psi_1)$. Based on $V(\psi)^{-1/2}$, we have

$$y_1(\psi) = (1 - \psi^2)^{1/2} y_1, \quad \mathbf{x}_1(\psi) = (1 - \psi^2)^{1/2} \mathbf{x}_1, y_t(\psi) = y_t - \psi y_{t-1}, \qquad \mathbf{x}_t(\psi) = \mathbf{x}_t - \psi \mathbf{x}_{t-1}, \qquad t = 2, \cdots, T.$$

- Iterative FGLS Estimation:
 - (1) Perform OLS estimation and compute $\hat{\psi}_{T}$ using the OLS residuals \hat{e}_{t} .
 - (2) Perform the Cochrane-Orcutt transformation based on ψ_T and compute the resulting FGLS estimate β_{FGLS} by regressing y_t(ψ_T) on x_t(ψ_T).
 - (3) Compute a new $\hat{\psi}_T$ with \hat{e}_t replaced by $\hat{e}_{t,\text{FGLS}} = y_t \mathbf{x}'_t \hat{\beta}_{\text{FGLS}}$.
 - (4) Repeat steps (2) and (3) until $\hat{\psi}_{\mathcal{T}}$ converges numerically.

Steps (1) and (2) suffice for FGLS estimation; more iterations may improve the performance in finite samples.

Instead of estimating $\hat{\psi}_{\mathcal{T}}$ based on OLS residuals, the Hildreth-Lu procedure adopts grid search to find a suitable $\psi \in (-1, 1)$.

- For a ψ in (-1,1), conduct the Cochrane-Orcutt transformation and compute the resulting FGLS estimate (by regressing y_t(ψ) on x_t(ψ)) and the ESS based on the FGLS residuals.
- Try every ψ on the grid; a ψ is chosen if the corresponding ESS is the smallest.
- The results depend on the grid.

Note: This method is computationally intensive and difficult to apply when ϵ_t follow an AR(p) process with p > 2.

Consider binary y with y = 1 or 0.

- Under [A1] and [A2](i), $\mathbb{E}(y_t) = \mathbb{P}(y_t = 1) = \mathbf{x}'_t \beta_o$; this is known as the linear probability model.
- Problems with the linear probability model:
 - Under [A1] and [A2](i), there is heteroskedasticity:

 $\operatorname{var}(y_t) = \mathbf{x}'_t \boldsymbol{\beta}_o(1 - \mathbf{x}'_t \boldsymbol{\beta}_o),$

and hence the OLS estimator is not the BLUE for β_o .

• The OLS fitted values $\mathbf{x}_t' \hat{\boldsymbol{\beta}}_{\mathcal{T}}$ need not be bounded between 0 and 1.

Consider binary y with y = 1 or 0.

- Under [A1] and [A2](i), $\mathbb{E}(y_t) = \mathbb{P}(y_t = 1) = \mathbf{x}'_t \beta_o$; this is known as the linear probability model.
- Problems with the linear probability model:
 - Under [A1] and [A2](i), there is heteroskedasticity:

 $\operatorname{var}(y_t) = \mathbf{x}'_t \boldsymbol{\beta}_o (1 - \mathbf{x}'_t \boldsymbol{\beta}_o),$

and hence the OLS estimator is not the BLUE for β_o .

• The OLS fitted values $\mathbf{x}'_t \hat{\boldsymbol{\beta}}_T$ need not be bounded between 0 and 1.

• An FGLS estimator may be obtained using

$$\begin{split} \widehat{\boldsymbol{\Sigma}}_{\mathcal{T}}^{-1/2} &= \mathsf{diag}\left[[\mathbf{x}_1' \hat{\boldsymbol{\beta}}_{\mathcal{T}} (1 - \mathbf{x}_1' \hat{\boldsymbol{\beta}}_{\mathcal{T}})]^{-1/2}, \dots, \\ & [\mathbf{x}_T' \hat{\boldsymbol{\beta}}_{\mathcal{T}} (1 - \mathbf{x}_T' \hat{\boldsymbol{\beta}}_{\mathcal{T}})]^{-1/2}\right]. \end{split}$$

Problems with FGLS estimation:

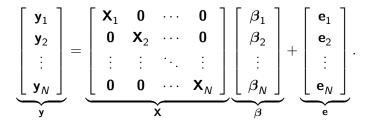
- Σ^{-1/2}_T can not be computed if x'_tβ_T is not bounded between 0 and 1.
 Even when Σ^{-1/2}_T is available, there is no guarantee that the FGLS fitted values are bounded between 0 and 1.
- The finite-sample properties of the FGLS estimator are unknown.
- A key issue: A linear model here fails to take into account data characteristics.

Application: Seemingly Unrelated Regressions

To study the joint behavior of several dependent variables, consider a system of N equations, each with k_i explanatory variables and T obs:

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta}_i + \mathbf{e}_i, \qquad i = 1, 2, \dots, N.$$

Stacking these equations yields Seemingly unrelated regressions (SUR):



where **y** is $TN \times 1$, **X** is $TN \times \sum_{i=1}^{N} k_i$, and β is $\sum_{i=1}^{N} k_i \times 1$.

- Suppose y_{it} and y_{jt} are contemporaneously correlated, but y_{it} and y_{jτ} are serially uncorrelated, i.e., cov(y_i, y_j) = σ_{ij}I_T.
- For this system, $\boldsymbol{\Sigma}_o = \boldsymbol{\mathsf{S}}_o \otimes \boldsymbol{\mathsf{I}}_{\mathcal{T}}$ with

$$\mathbf{S}_{o} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{N1} & \sigma_{N2} & \cdots & \sigma_{N}^{2} \end{bmatrix}$$

that is, the SUR system has both serial and spatial correlations. • As $\Sigma_o^{-1} = S_o^{-1} \otimes I_T$, then

$$\hat{\boldsymbol{\beta}}_{\mathrm{GLS}} = [\mathbf{X}'(\mathbf{S}_o^{-1} \otimes \mathbf{I}_T)\mathbf{X}]^{-1}\mathbf{X}'(\mathbf{S}_o^{-1} \otimes \mathbf{I}_T)\mathbf{y},$$

and its covariance matrix is $[\mathbf{X}'(\mathbf{S}_o^{-1} \otimes \mathbf{I}_T)\mathbf{X}]^{-1}$.

- Remarks:
 - When σ_{ij} = 0 for i ≠ j, S_o is diagonal, and so is Σ_o. Then, the GLS estimator for each β_i reduces to the corresponding OLS estimator, so that joint estimation of N equations is not necessary.
 - If all equations in the system have the same regressors, i.e., X_i = X₀ (say) and X = I_N ⊗ X₀, the GLS estimator is also the same as the OLS estimator.
 - More generally, there would not be much efficiency gain for GLS estimation if \mathbf{y}_i and \mathbf{y}_j are less correlated and/or \mathbf{X}_i and \mathbf{X}_j are highly correlated.
- The FGLS estimator can be computed as

$$\hat{\boldsymbol{\beta}}_{\mathrm{FGLS}} = [\mathbf{X}'(\widehat{\mathbf{S}}_{\mathcal{TN}}^{-1} \otimes \mathbf{I}_{\mathcal{T}})\mathbf{X}]^{-1}\mathbf{X}'(\widehat{\mathbf{S}}_{\mathcal{TN}}^{-1} \otimes \mathbf{I}_{\mathcal{T}})\mathbf{y}.$$

• $\widehat{\mathbf{S}}_{TN}$ is an $N \times N$ matrix:

$$\widehat{\mathbf{S}}_{TN} = \frac{1}{T} \begin{bmatrix} \widehat{\mathbf{e}}_1' \\ \widehat{\mathbf{e}}_2' \\ \vdots \\ \widehat{\mathbf{e}}_N' \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{e}}_1 \ \widehat{\mathbf{e}}_2 \ \dots \ \widehat{\mathbf{e}}_N \end{bmatrix},$$

where $\hat{\mathbf{e}}_i$ is the OLS residual vector of the *i*th equation.

- The estimator S
 _{TN} is valid provided that var(y_i) = σ_i²I_T and cov(y_i, y_j) = σ_{ij}I_T. Without these assumptions, FGLS estimation would be more complicated.
- Again, the finite-sample properties of the FGLS estimator are unknown.