
Chapter 9

Quasi-Maximum Likelihood

Theory

As discussed in preceding chapters, postulating a (non-)linear specification and estimating

its unknown parameters by the least squares method amounts to approximating the condi-

tional mean function of the dependent variable. This approach is practically useful, yet its

scope is quite limited. First, it leaves no room for modeling other conditional moments, such

as conditional variance, of the dependent variable. Second, it fails to accommodate certain

characteristics of the dependent variable, such as binary response and data truncation. To

provide a more complete description of the conditional behavior of a dependent variable, it

is desirable to formulate a model that admits specifications of different conditional moments

and/or distribution characteristics. To this end, the method of quasi-maximum likelihood

(QML) is to be preferred.

The QML method is essentially the same as the ML method usually seen in statistics

and econometrics textbooks. A key difference between these two methods is that the

former allows for possible misspecification of the likelihood function. It is conceivable that

specifying a likelihood function, while being more general and more flexible than specifying

a function for conditional mean, is more likely to result in specification errors. How to draw

statistical inferences under potential model misspecification is thus a major concern of the

QML method. By contrast, the conventional ML method assumes that the postulated

likelihood function is specified correctly, so that specification errors are “assumed away.”

As such, the results in the ML method are just special cases of the QML method. Our

discussion below is primarily based on White (1994); for related discussion we also refer to

White (1982), Amemiya (1985), Godfrey (1988), and Gourieroux and Monfort (1995).
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222 CHAPTER 9. QUASI-MAXIMUM LIKELIHOOD THEORY

9.1 Kullback-Leibler Information Criterion

We first discuss the concept of information. In a random experiment, suppose that the

event A occurs with probability p. The message that A will surely occur would be more

valuable (or more surprising) when p is small, but it is less informative (or less surprising)

when p is large. Hence, the information content of the message that A will occur ought to

be a decreasing function of the true event probability p.

A common choice of the information function is

ι(p) = log(1/p),

which decreases from positive infinity (p ≈ 0) to zero (p = 1). It should be clear that

ι(1− p), the information that A will not occur, is not the same as ι(p), unless p = 0.5. The

expected information of these two messages is

I = p ι(p) + (1− p) ι(1− p) = p log
(1

p

)
+ (1− p) log

( 1

1− p
)
.

The expected information I is also known as the entropy of the event A.

Similarly, the information that the probability of the event A changes from p to q would

be useful when p and q are very different, but it is not of much value when p and q are

close. The resulting information content is then the difference between these two pieces of

information:

ι(p)− ι(q) = log(q/p),

which is positive (negative) when q > p (q < p). Given n mutually exclusive events

A1, . . . , An, each with an information value log(qi/pi), the expected information value is

then

I =

n∑
i=1

qi log
( qi
pi

)
.

This idea is readily generalized to discuss the information content of density functions, as

discussed below.

Let g be the density function of the random variable z and f be another density function.

Define the Kullback-Leibler Information Criterion (KLIC) of g relative to f as

II(g :f) =

∫
R

log
( g(ζ)

f(ζ)

)
g(ζ) dζ.

When f is used to describe z, the value II(g : f) is the expected “surprise” resulted from the

fact that g is the true density of z. The following result shows that the KLIC of g relative

to f is non-negative.
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9.1. KULLBACK-LEIBLER INFORMATION CRITERION 223

Theorem 9.1 Let g be the density function of the random variable z and f be another

density function. Then II(g :f) ≥ 0, with the equality holding if, and only if, g = f almost

everywhere (i.e., g = f except on a set with Lebesgue measure zero).

Note, however, that the KLIC is not a metric because it is not reflexive in general, i.e.,

II(g :f) 6= II(f :g), and it does not obey the triangle inequality; see Exercise 9.1. Hence, the

KLIC is only a rough measure of the closeness between f and g.

Let {zt} be a sequence of Rν-valued random variables defined on the probability space

(Ω,F , IPo) and zt be the collection of (z1, z2, . . . ,zt). Given a sample of T observations,

specifying a complete probability model for zT may be a formidable task in practice because

it involves too many random variables (T random vectors zt, each with ν random variables).

Let yt denote an element of zt whose behavior is of particular interest to us. Writing zt

as (yt w
′
t)
′, it is practically more convenient to specify a probability model for gt(yt | xt),

the density of yt conditional on the information generated by a set of “pre-determined”

variables, xt, which include some elements of wt and zt−1. Similar to zt, we also write

yt = (y1, . . . , yt) and xt = (x1, . . . ,xt).

To approximate gt(yt | xt), we may specify a quasi-likelihood function ft(yt | xt;θ) with

θ ∈ Θ ⊆ Rk. Note that the prefix “quasi” is used to indicate that the likelihood is possibly

misspecified. The KLIC of gt relative to ft is

II(gt :ft;θ) =

∫
R

log

(
gt(yt | xt)
ft(yt | xt;θ)

)
gt(yt | xt) dyt.

For a sample of T observations, we consider the average of T individual KLICs:

ĪIT ({gt :ft};θ) :=
1

T

T∑
t=1

II(gt :ft;θ)

=
1

T

T∑
t=1

(
IE[log gt(yt | xt)]− IE[log ft(yt | xt;θ)]

)
.

(9.1)

It is clear that minimizing ĪIT ({gt :ft};θ) in (9.1) is equivalent to maximizing

L̄T (θ) =
1

T

T∑
t=1

IE[log ft(yt | xt;θ)]. (9.2)

The maximizer of (9.2), θ∗, is thus the minimizer of the average KLIC (9.1). If there exists

a θo ∈ Θ such that ft(yt | xt;θo) = gt(yt | xt) for all t, we say that {ft} is correctly specified

for {yt | xt}. In this case, II(gt :ft;θo) = 0, so that ĪIT ({gt :ft};θ) is minimized at θ∗ = θo.
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224 CHAPTER 9. QUASI-MAXIMUM LIKELIHOOD THEORY

Clearly, L̄T (θ) is not directly observable because it involves the expectation operator

which depends on the joint density of zT . We may then maximize its sample counterpart:

LT (yT ,xT ;θ) :=
1

T

T∑
t=1

log ft(yt | xt;θ), (9.3)

the average of the individual quasi-log-likelihood functions. The resulting solution, θ̃T , is

known as the quasi-maximum likelihood estimator (QMLE) of θ. When {ft} is specified

correctly for {yt | xt}, the QMLE is understood as the standard MLE, as in standard

statistics and econometrics textbooks.

In practice, one may concentrate on certain conditional attribute of yt and postulate a

specification µt(xt;θ) for this attribute. A leading example is the following specification of

conditional normality with µt(xt;θ) as the specification of its mean:

yt | xt ∼ N
(
µt(xt;β), σ2

)
,

or more generally, with µt(xt;θ) and h(xt;α) as the specifications of its respective mean

and variance:

yt | xt ∼ N
(
µt(xt;β), h(xt;α)

)
.

Note that the functional forms for conditional mean and conditional variance may have

specification errors; even the specification of normality may also be incorrect.

For example, consider the specification yt | xt ∼ N
(
µt(xt;β), σ2

)
. Setting θ = (β′ σ2)′,

it is easy to see that the maximizer of T−1
∑T

t=1 log ft(yt | xt;θ) leads to the solution to

min
β

1

T

T∑
t=1

[yt − µt(xt;β)]′ [yt − µt(xt;β)] ,

which is the NLS estimator of β. That is, the NLS estimator can be viewed as a QMLE

under the specification of conditional normality with conditional homoskedasticity. Note

that, even when {µt} is correctly specified for the conditional mean in the sense that there

exists a θo such that µt(xt;θo) = IE(yt | xt), there is no guarantee that the specifications

of σ2 is correct.

9.2 Asymptotic Properties of the QMLE

The quasi-log-likelihood function is, in general, a nonlinear function in θ. The QMLE must

be computed numerically using a nonlinear optimization algorithm, so that the algorithms

discussed in Section 8.2.2 are readily applied. We do not repeat these methods here but
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9.2. ASYMPTOTIC PROPERTIES OF THE QMLE 225

shall proceed to discuss the asymptotic properties of the QMLE. For our subsequent analy-

sis, we always assume that the specified quasi-log-likelihood function is twice continuously

differentiable on a compact parameter space Θ with probability one and that integration

and differentiation can be interchanged. Moreover, we maintain the following identification

condition.

[ID-3] There exists a unique θ∗ that minimizes the KLIC: (9.1).

9.2.1 Consistency

We sketch the idea of establishing the consistency of the QMLE. In the light of the uniform

law of large numbers discussed in Section 8.3.1, we know that if LT (yT ,xT ;θ) tends to L̄T (θ)

uniformly in θ ∈ Θ, i.e., LT (yT ,xT ;θ) obeys a WULLN, then θ̃T → θ∗ in probability, where

θ∗ is the minimizer of the average KLIC, ĪIT ({gt : ft};θ). When {ft} is specified correctly

for {yt | xt}, the KLIC minimizer θ∗ is also the true parameter θo. In this case, the

QMLE is weakly consistent for θo. Therefore, the regularity conditions that ensure QMLE

consistency are basically those ensuring a WULLN of the quasi-log-likelihood function; we

will not pursue the technical details here.

9.2.2 Asymptotic Normality

Given that θ̃T → θ∗ in probability, the asymptotic normality of θ̃T can be established by

analyzing the local behavior of the quasi-log-likelihood function LT around θ∗. When θ∗ is

in the interior of Θ, the mean-value expansion of ∇LT (yT ,xT ; θ̃T ) about θ∗ is

∇LT (yT ,xT ; θ̃T ) = ∇LT (yT ,xT ;θ∗) +∇2LT (yT ,xT ;θ†T )(θ̃T − θ∗), (9.4)

where θ†T is between θ̃T and θ∗, and the left-hand side of (9.4) is zero because the QMLE

θ̃T solves the first order condition ∇LT (yT ,xT ;θ) = 0. The asymptotic normality of θ̃T is

then determined by the right-hand side of (9.4).

Let HT (θ) = IE[∇2LT (yT ,xT ;θ)] be the expected value of the Hessian matrix of the

specified quasi-log-likelihood function. As θ̃T is weakly consistent for θ∗, so is θ†T . When

∇2LT (yT ,xT ;θ) obeys a WULLN, we have

∇2LT (yT ,xT ;θ†T )−HT (θ∗)
IP−→ 0.

Then, provided that HT (θ) is invertible, (9.4) can be written as

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T ∇LT (yT ,xT ;θ∗) + oIP(1). (9.5)

This shows that the asymptotic distribution of
√
T (θ̃T − θ∗) is essentially determined by

the asymptotic distribution of the normalized score:
√
T ∇LT (yT ,xT ;θ∗). Note that the
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226 CHAPTER 9. QUASI-MAXIMUM LIKELIHOOD THEORY

invertibility of HT (θ∗) ensures that ∇2LT (yT ,xT ;θ†T ) is also invertible when T is suf-

ficiently large. This in turn suggests that the quasi-log-likelihood function LT must be

locally quadratic at θ∗, at least asymptotically.

Let BT (θ) denote the variance-covariance matrix of
√
T∇LT (yT ,xT ;θ):

BT (θ) = var
(√
T∇LT (yT ,xT ;θ)

)
= var

(
1√
T

T∑
t=1

∇ log ft(yt | xt;θ)

)
,

which will also be referred to as the information matrix. Then provided that ∇ log ft(yt |
xt;θ) obeys a CLT, we have

BT (θ∗)−1/2
√
T
(
∇LT (yT ,xT ;θ∗)− IE[∇LT (yT ,xT ;θ∗)]

) D−→ N (0, Ik). (9.6)

When differentiation and integration can be interchanged,

IE[∇LT (yT ,xT ;θ)] = ∇ IE[LT (yT ,xT ;θ)] = ∇L̄T (θ),

where the right-hand side is the first order derivative of (9.2). As θ∗ is the KLIC minimizer,

∇L̄T (θ∗) = 0 so that IE[∇LT (yT ,xT ;θ∗)] = 0. By (9.5) and (9.6),

√
T (θ̃T − θ∗) = −HT (θ∗)−1BT (θ∗)1/2

[
BT (θ∗)−1/2

√
T ∇LT (yT ,xT ;θ∗)

]
+ oIP(1),

which has an asymptotic normal distribution, as shown in the following result.

Theorem 9.2 When (9.4), (9.5) and (9.6) hold,

CT (θ∗)−1/2
√
T (θ̃T − θ∗)

D−→ N (0, Ik),

where

CT (θ∗) = HT (θ∗)−1BT (θ∗)HT (θ∗)−1,

with HT (θ∗) = IE[∇2LT (yT ,xT ;θ∗)] and BT (θ∗) = var
(√
T∇LT (yT ,xT ;θ∗)

)
.

9.3 Information Matrix Equality

A useful result in the quasi-maximum likelihood theory is the information matrix equality.

This equality shows that when the specification is correct up to certain extent, the infor-

mation matrix BT (θ) is the same as the negative of the expected Hessian matrix −HT (θ)

when evaluated at θ = θo, i.e.,

HT (θo) +BT (θo) = 0.
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9.3. INFORMATION MATRIX EQUALITY 227

In this case, the asymptotic covariance matrix CT (θo) can be simplified to −HT (θo)
−1 or

BT (θo)
−1 which renders its estimation simpler.

For the specification of {yt|xt}, define the following score functions:

st(yt,xt;θ) = ∇ log ft(yt|xt;θ) = ft(yt|xt;θ)−1∇ft(yt|xt;θ),

so that ∇ft(yt|xt;θ) = st(yt,xt;θ)ft(yt|xt;θ). By permitting interchange of differentiation

and integration we have∫
R
st(yt,xt;θ)ft(yt|xt;θ) dyt = ∇

∫
R
ft(yt|xt;θ) dyt = 0.

If {ft} is correctly specified for {yt|xt}, we have IE[st(yt,xt;θo)|xt] = 0, where the condi-

tional expectation is taken with respect to gt(yt|xt) = ft(yt|xt;θo). By the law of iterated

expectations, we have IE[st(yt,xt;θo)] = 0, so that the mean score is zero under correct

specification. Similarly,∫
R

[∇st(yt,xt;θ) + st(yt,xt;θ)st(yt,xt;θ)′] ft(yt|xt;θ) dyt

=

∫
R
∇
(
∇ft(yt|xt;θ)

)
dyt

= ∇2

∫
R
ft(yt|xt;θ) dyt

= 0.

It follows that

IE[∇st(yt,xt;θo)|xt] + IE[st(yt,xt;θo)st(yt,xt;θo)
′|xt] = 0.

Consequently,

1

T

T∑
t=1

IE[∇st(yt,xt;θo)] +
1

T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′]

= HT (θo) +
1

T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′]

= 0.

(9.7)

This shows that the expected Hessian matrix is the negative of the averaged of individual

information matrices, i.e., var(st(yt,xt;θo)). Note, however, that the latter need not be

the information matrix BT (θo).
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228 CHAPTER 9. QUASI-MAXIMUM LIKELIHOOD THEORY

To see this, recall that

BT (θo) =
1

T
IE

[(
T∑
t=1

st(yt,xt;θo)

)(
T∑
t=1

st(yt,xt;θo)
′

)]

=
1

T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′]

+
1

T

T−1∑
τ=1

T∑
t=τ+1

IE[st−τ (yt−τ ,xt−τ ;θo)st(yt,xt;θo)
′]

+
1

T

T−1∑
τ=1

T∑
t=τ+1

IE[st(yt,xt;θo)st+τ (yt+τ ,xt+τ ;θo)
′].

A specification of {yt|xt} is said to have dynamic misspecification if it is not correctly

specified for {yt|wt, z
t−1}; that is, there does not exist any θo such that ft(yt|xt;θo) =

gt(yt|wt, z
t−1). Thus, the information contained in wt and zt−1 cannot be fully captured

by xt, and some important variables are omitted in the conditioning set, such as remote

lagged yt. On the other hand, when ft(yt|xt;θo) = gt(yt|wt, z
t−1), we have

IE[st(yt,xt;θo)|xt] = IE[st(yt,xt;θo)|wt, z
t−1] = 0, (9.8)

so that by the law of iterated expectations,

IE
[
st(yt,xt;θo)st+τ (yt+τ ,xt+τ ;θo)

′]
= IE

[
st(yt,xt;θo) IE[st+τ (yt+τ ,xt+τ ;θo)

′|wt+τ , zt+τ−1]
]

= 0,

for τ ≥ 1. We thus have

BT (θo) =
1

T

T∑
t=1

IE
[
st(yt,xt;θo)st(yt,xt;θo)

′],
so that (9.7) is understood as the information matrix equality. On the other hand, when

dynamic misspecification is present, (9.7) remains valid, yet it is not the information matrix

equality.

Theorem 9.3 Suppose that there exists a θo such that ft(yt|xt;θo) = gt(yt|xt) and there

is no dynamic misspecification. Then,

HT (θo) +BT (θo) = 0,

where HT (θo) = T−1
∑T

t=1 IE[∇st(yt,xt;θo)] and

BT (θo) =
1

T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′].
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9.3. INFORMATION MATRIX EQUALITY 229

When Theorem 9.3 holds, the covariance matrix needed to normalize
√
T (θ̃T−θo) simplifies

to BT (θo)
−1 = −HT (θo)

−1; that is,

−HT (θo)
1/2
√
T (θ̃T − θo)

D−→ N (0, Ik).

This shows that the QMLE achieves the Cramér-Rao lower bound asymptotically. Note

that it is typically easy to estimate HT (θo) consistently. When the information matrix

equality does not hold, one must also consistently estimate BT (θo) and then compute

C(θo). When dynamic misspecification is present, a consistent estimator of BT (θo) may

be obtained using a Newey-West type estimator.

Example 9.4 Consider the following specification: yt|xt ∼ N (x′tβ, σ
2) for all t. Let θ =

(β′ σ2)′, then

log f(yt|xt;θ) = −1

2
log(2π)− 1

2
log(σ2)− (yt − x′tβ)2

2σ2
,

and

LT (yT ,xT ;θ) = −1

2
log(2π)− 1

2
log(σ2)− 1

T

T∑
t=1

(yt − x′tβ)2

2σ2
.

Straightforward calculation yields

∇LT (yT ,xT ;θ) =
1

T

T∑
t=1

 xt(yt−x′tβ)
σ2

− 1
2σ2 +

(yt−x′tβ)2

2(σ2)2

 ,
∇2LT (yT ,xT ;θ) =

1

T

T∑
t=1

 −xtx′t
σ2 −xt(yt−x′tβ)

(σ2)2

− (yt−x′tβ)x′t
(σ2)2

1
2(σ2)2

− (yt−x′tβ)2

(σ2)3

 .
Setting ∇LT (yT ,xT ;θ) = 0 we can solve for β from the first set of first order conditions

to obtain the QMLE β̃T , which is nothing but the OLS estimator β̂T . It can also be seen

that the QMLE of σ2 is the average of the OLS residuals: σ̃2
T = T−1

∑T
t=1(yt − x′tβ̂T )2.

If the specification above is correct for {yt|xt}, there exists θo = (β′o σ
2
o)
′ such that the

conditional distribution of yt given xt is N (x′tβo, σ
2
o). Taking expectation with respect to

the true distribution function, we have

IE[xt(yt − x′tβ)] = IE[xt(IE(yt|xt)− x′tβ)] = IE(xtx
′
t)(βo − β),

which is zero when evaluated at β = βo. Similarly,

IE[(yt − x′tβ)2] = IE[(yt − x′tβo + x′tβo − x′tβ)2]

= IE[(yt − x′tβo)2] + IE[(x′tβo − x′tβ)2]

= σ2
o + IE[(x′tβo − x′tβ)2],
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where the second term on the right-hand side is zero if it is evaluated at β = βo. These

results together show that

HT (θ) = IE[∇2LT (θ)]

=
1

T

T∑
t=1

 − IE(xtx′t)
σ2 − IE(xtx′t)(βo−β)

(σ2)2

− (βo−β)′ IE(xtx′t)
(σ2)2

1
2(σ2)2

− σ2
o+IE[(x′tβo−x′tβ)2]

(σ2)3

 . (9.9)

When HT (θ) is evaluated at θo = (β′o σ
2
o)
′, we have

HT (θo) =
1

T

T∑
t=1

 − IE(xtx′t)
σ2
o

0

0′ − 1
2(σ2

o)2

 .
If there is no dynamic misspecification, it is straightforward to show that the information

matrix is

BT (θ) =
1

T

T∑
t=1

IE

 (yt−x′tβ)2xtx′t
(σ2)2

−xt(yt−x′tβ)
2(σ2)2

+
xt(yt−x′tβ)3

2(σ2)3

− (yt−x′tβ)x′t
2(σ2)2

+
(yt−x′tβ)3x′t

2(σ2)3
1

4(σ2)2
− (yt−x′tβ)2

2(σ2)3
+

(yt−x′tβ)4

4(σ2)4

 . (9.10)

Given that yt is conditionally normally distributed, its conditional third and fourth central

moments are zero and 3(σ2
o)

2, respectively. It can then be verified that

IE[(yt − x′tβ)3] = 3σ2
o IE[(x′tβo − x′tβ)] + IE[(x′tβo − x′tβ)3],

which is zero when evaluated at β = βo. Similarly,

IE[(yt − x′tβ)4] = 3(σ2
o)

2 + 6σ2
o IE[(x′tβo − x′tβ)2] + IE[(x′tβo − x′tβ)4],

which is 3(σ2
o)

2 when evaluated at β = βo; see Exercise 9.2. Consequently,

BT (θo) =
1

T

T∑
t=1

 IE(xtx′t)
σ2
o

0

0′ 1
2(σ2

o)2

 .
It is now easily seen that the information matrix equality holds. Yet, when there is dy-

namic missepcification, BT (θ) would not be the same as the form given above so that the

information matrix equality breaks down; see Exercise 9.3.

A typical consistent estimator of HT (θo) is the sample counterpart of HT (θo) with σ2
o

replaced by its QMLE σ̃2
T :

H̃T =

 −∑T
t=1 xtx′t
T σ̃2

T
0

0′ − 1
2(σ̃2

T )2

 .
When the information matrix equality holds, a consistent estimator of CT (θo) is −H̃−1

T . It

can be seen that the upper-left block of −H̃−1

T is σ̃2
T (
∑T

t=1 xtx
′
t/T )−1, which is the standard

OLS estimator for the asymptotic covariance matrix of T 1/2(β̂T − βo). 2
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9.3. INFORMATION MATRIX EQUALITY 231

The example below shows that, even when the specification for IE(yt|xt) is correct and

there is no dynamic misspecification, the information matrix equality may still fail to hold

if there is misspecification of other conditional moments, such as neglected conditional

heteroskedasticity.

Example 9.5 Suppose that the true conditional density is

yt|xt ∼ N
(
x′tβo, h(xt,αo)

)
,

where the conditional variance h(xt,αo) varies with xt. Yet, our specification is still that in

Example 9.4: yt|xt ∼ N (x′tβ, σ
2). Then, this specification includes a correct specification

for the conditional mean but a misspecified conditional variance. Assume that there is no

dynamic misspecification. Due to misspecification, the KLIC minimizer is θ∗ = (β′o, (σ
∗)2)′.

From Example 9.4 we have from (9.9) that

HT (θ∗) =
1

T

T∑
t=1

 − IE(xtx′t)
(σ∗)2 0

0′ − 1
2(σ∗)4 + IE[h(xt,αo)]

(σ∗)6

 ,
and by (9.10),

BT (θ∗) =
1

T

T∑
t=1

 IE[h(xt,αo)xtx′t]
(σ∗)4 0

0′ 1
4(σ∗)4 −

IE[h(xt,αo)]
2(σ∗)6 + 3 IE[h(xt,αo)2]

4(σ∗)8

 .
It is easy to verify that the information matrix equality does not hold, despite that the

conditional mean function is specified correctly.

In this case, it can be seen that the upper-left block of the estimator H̃T given in

Example 9.4, −∑T
t=1 xtx

′
t/(T σ̃

2
T ), remains a consistent estimator of the corresponding

block in HT (θ∗). The information matrix BT (θ∗) can be consistently estimated by a

block-diagonal matrix with the upper-left block:∑T
t=1 ê

2
txtx

′
t

T (σ̃2
T )2

;

see Section 6.3.1. Then, as far as the estimation of the asymptotic covariance matrix of

T 1/2(β̃T − βo) is concerned, only the upper-left block of C̃T = H̃
−1

T B̃T H̃
−1

T is needed,

which reads(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

ê2
txtx

′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1

.

This is precisely the the Eicker-White estimator (6.8) given in Section 6.3.1, which is con-

sistent when heteroskedasticity is present of unknown form. 2
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9.4 Large Sample Tests: Nested Models

In this section we again consider the null hypothesis Rθ∗ = r, where R is q×k matrix with

full row rank, and discuss three classical large sample tests (Wald, LM, and likelihood ratio

tests), and the information matrix test of White (1982, 1987). The postulated hypothesis

suggests that the model under the null is obtained by restricting the parameters in a more

general model under the alternative. Such models are therefore known as nested models,

in the sense that one model is nested in another.

9.4.1 Wald Test

Similar to the Wald test for linear regression discussed in Section 6.4.1, the Wald test under

the QMLE framework is based on the difference Rθ̃T − r. From (9.5),

√
TR(θ̃T − θ∗) = −RHT (θ∗)−1BT (θ∗)1/2

[
BT (θ∗)−1/2

√
T ∇LT (zT ;θ∗)

]
+ oIP(1).

It is then clear that RCT (θ∗)R′ = RHT (θ∗)−1BT (θ∗)HT (θ∗)−1R′ is needed to normalize√
TR(θ̃T − θ∗). Under the null hypothesis, Rθ∗ = r, and hence

[RCT (θ∗)R′]−1/2
√
T (Rθ̃T − r)

D−→ N (0, Iq). (9.11)

This is the key distribution result for the Wald test.

Let H̃T denote a consistent estimator forHT (θ∗) and B̃T denote a consistent estimator

for BT (θ∗). It follows that a consistent estimator for CT (θ∗) is

C̃T = H̃
−1

T B̃T H̃
−1

T .

Substituting C̃T for CT (θ∗) in (9.11) we have

[RC̃TR
′]−1/2

√
T (Rθ̃T − r)

D−→ N (0, Iq). (9.12)

The Wald test statistic is the inner product of the left-hand side of (9.12):

WT = T (Rθ̃T − r)′(RC̃TR
′)−1(Rθ̃T − r), (9.13)

and its asymptotic distribution follows easily from (9.12) and the continuous mapping

theorem.

Theorem 9.6 Suppose that Theorem 9.2 holds for the QMLE θ̃T . Then under the null

hypothesis,

WT
D−→ χ2(q),

where WT is defined in (9.13) and q is the number of rows of R.
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Example 9.7 Consider the quasi-log-likelihood function specified in Example 9.4. We

write θ = (σ2 β′)′ and β = (b′1 b
′
2)′, where b1 is (k − s) × 1, and b2 is s × 1. We are

interested in the null hypothesis that b∗2 = Rθ∗ = 0, where R = [0 R1] is s× (k + 1) and

R1 = [0 Is] is s× k. The Wald test can be computed according to (9.13):

WT = T β̃
′
2,T (RC̃TR

′)−1β̃2,T ,

where β̃2,T = Rθ̃T is the estimator of b2.

As shown in Example 9.4, when the information matrix equality holds, C̃T = −H̃−1

T is

block diagonal so that

RC̃TR
′ = −RH̃−1

T R
′ = σ̃2

TR1(X ′X/T )−1R′1.

The Wald test then becomes

WT = T β̃
′
2,T [R1(X ′X/T )−1R′1]−1β̃2,T /σ̃

2
T ,

which is just s times the standard F statistic, as also shown in Example 6.11. It should

be stressed that this simpler version of the Wald test would not be valid if the information

matrix equality fails. 2

9.4.2 Lagrange Multiplier Test

To derive the LM test, consider the problem of maximizing LT (θ) subject to the constraint

Rθ = r. The Lagrangian is

LT (θ) + θ′R′λ,

where λ is the vector of Lagrange multipliers. The maximizers of the Lagrangian are

denoted as θ̈T and λ̈T , where θ̈T is the constrained QMLE of θ. Analogous to Section 6.4.2,

the LM test under the QML framework also checks whether λ̈T is sufficiently close to zero.

First note that θ̈T and λ̈T satisfy the saddle-point condition:

∇LT (θ̈T ) +R′λ̈T = 0.

The mean-value expansion of ∇LT (θ̈T ) about θ∗ yields

∇LT (θ∗) +∇2LT (θ†T )(θ̈T − θ∗) +R′λ̈T = 0,

where θ†T is the mean value between θ̈T and θ∗. It has been shown in (9.5) that

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T∇LT (θ∗) + oIP(1).
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Hence,

−HT (θ∗)
√
T (θ̃T − θ∗) +∇2LT (θ†T )

√
T (θ̈T − θ∗) +R′

√
T λ̈T = oIP(1).

Basing on the WULLN result: ∇2LT (θ†T )−HT (θ∗)
IP−→ 0, we obtain

√
T (θ̈T − θ∗) =

√
T (θ̃T − θ∗)−HT (θ∗)−1R′

√
T λ̈T + oIP(1). (9.14)

This establishes a relationship between the constrained and unconstrained QMLEs.

Pre-multiplying both sides of (9.14) by R and noting that the constrained estimator θ̈T

must satisfy the constraint so that R(θ̈T − θ∗) = 0, we have

√
T λ̈T = [RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗) + oIP(1), (9.15)

which relates the Lagrangian multiplier and the unconstrained QMLE θ̃T . Let

ΛT (θ∗) = [RHT (θ∗)−1R′]−1RCT (θ∗)R′[RHT (θ∗)−1R′]−1.

When Theorem 9.2 holds for the normalized θ̃T , the following asymptotic normality result

for the normalized Lagrangian multiplier is immediate:

ΛT (θ∗)−1/2
√
T λ̈T = ΛT (θ∗)−1/2[RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗)

D−→ N (0, Iq).
(9.16)

Let ḦT denote a consistent estimator for HT (θ∗) and C̈T denote a consistent estimator

for CT (θ∗), both based on the constrained QMLE θ̈T . Then,

Λ̈T = (RḦ
−1
T R

′)−1RC̈TR
′(RḦ

−1
T R

′)−1

is consistent for ΛT (θ∗). It follows from (9.16) that

Λ̈
−1/2
T

√
T λ̈T

D−→ N (0, Iq). (9.17)

The LM test statistic is the inner product of the left-hand side of (9.17):

LMT = T λ̈
′
T Λ̈
−1
T λ̈T = T λ̈

′
TRḦ

−1
T R

′(RC̈TR
′)−1RḦ

−1
T R

′λ̈T . (9.18)

The limiting distribution of the LM test now follows easily from (9.17) and the continuous

mapping theorem.

Theorem 9.8 Suppose that Theorem 9.2 holds for the QMLE θ̃T . Then under the null

hypothesis,

LMT
D−→ χ2(q),

where LMT is defined in (9.18) and q is the number of rows of R.
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Remark: From (9.18) we can also write

LMT = T∇LT (θ̈T )′Ḧ
−1
T R

′(RC̈TR
′)−1RḦ

−1
T ∇LT (θ̈T ),

which is mainly based on the score function ∇LT evaluated at θ̈T . When the information

matrix equality holds, the LM statistic further simplifies to

LMT = −T λ̈′TRḦ
−1
T R

′λ̈T = −T∇LT (θ̈T )′Ḧ
−1
T ∇LT (θ̈T ).

The LM test is thus a test that checks if the average of individual scores is sufficiently close

to zero and hence also known as the score test.

Example 9.9 Consider the quasi-log-likelihood function specified in Example 9.4. We

write θ = (σ2 β′)′ and β = (b′1 b
′
2)′, where b1 is (k − s) × 1, and b2 is s × 1. We are

interested in the null hypothesis that b∗2 = Rθ∗ = 0, where R = [0 R1] is s× (k + 1) and

R1 = [0 Is] is s× k. From the saddle-point condition,

∇LT (θ̈T ) = −R′λ̈T ,

which can be partitioned as

∇LT (θ̈T ) =


∇σ2LT (θ̈T )

∇b1LT (θ̈T )

∇b2LT (θ̈T )

 =


0

0

−λ̈T

 = −R′λ̈T .

Thus, the LM test is mainly based on ∇b2LT (θ̈T ). Partitioning xt accordingly as (x′1t x
′
2t)
′,

we have

∇b2LT (θ̈T ) =
1

T σ̈2
T

T∑
t=1

x2tε̈t = X ′2ε̈/(T σ̈
2
T ),

where σ̈2
T = ε̈′ε̈/T , and ε̈ is the vector of constrained residuals obtained from regressing yt

on x1t, and X2 is the T × s matrix whose t th row is x′2t. The LM test can be computed

according to (9.18):

LMT = T


0

0

X ′2ε̈/(T σ̈
2
T )


′

Ḧ
−1
T R

′(RC̈TR
′)−1RḦ

−1
T


0

0

X ′2ε̈/(T σ̈
2
T )

 ,
which converges in distribution to χ2(s) under the null hypothesis. Note that we do not

have to evaluate the complete score vector for computing the LM test; only the subvector

of the score that corresponds to the constraint really matters.
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When the information matrix equality holds, the LM statistic has a simpler form:

LMT = −T∇LT (θ̈T )′Ḧ
−1
T ∇LT (θ̈T )

= T [0′ ε̈′X2/T ](X ′X/T )−1[0′ ε̈′X2/T ]′/σ̈2
T

= T [ε̈′X(X ′X)−1X ′ε̈/ε̈′ε̈]

= TR2,

where R2 is the non-centered coefficient of determination obtained from the auxiliary re-

gression of the constrained residuals ε̈t on x1t and x2t. This is also the result obtained in

Example 6.13. 2

Example 9.10 (Breusch-Pagan) Suppose that the specification is

yt|xt, ζt ∼ N
(
x′tβ, h(ζ′tα)

)
,

where h : R → (0,∞) is a differentiable function, and ζ′tα = α0 +
∑p

i=1 ζtiαi. The null

hypothesis is conditional homoskedasticity, i.e., α1 = · · · = αp = 0 so that h(α0) = σ2
0.

Breusch and Pagan (1979) derived the LM test for this hypothesis under the assumption

that the information matrix equality holds. This test is now usually referred to as the

Breusch-Pagan test.

Note that the constrained specification is yt|xt, ζt ∼ N (x′tβ, σ
2), where σ2 = h(α0).

This leads to the standard linear regression model without heteroskedasticity. The con-

strained QMLEs for β and σ2 are, respectively, the OLS estimators β̂T and σ̈2
T =

∑T
t=1 ê

2
t /T ,

where êt are the OLS residuals. As in Example 9.9, we evaluate the score vector correspond-

ing to α:

∇αLT (yt,xt, ζt;θ) =
1

T

T∑
t=1

[
h1(ζ′tα)ζt
2h(ζ′tα)

(
(yt − x′tβ)2

h(ζ′tα)
− 1

)]
,

where h1(η) = dh(η)/ dη. Under the null hypothesis, h1(ζ′tα) = h1(α0) is just a constant

and will be denoted as c. The score vector above evaluated at the constrained QMLEs is

∇αLT (yt,xt, ζt; θ̈T ) =
c

T

T∑
t=1

[
ζt

2σ̈2
T

(
ê2
t

σ̈2
T

− 1

)]
.

It can be shown that the (p+ 1)× (p+ 1) block of the Hessian matrix corresponding to α

is

1

T

T∑
t=1

[−(yt − x′tβ)2

h3(ζ′tα)
+

1

2h2(ζ′tα)

]
[h1(ζ′α)]2ζtζ

′
t

+

[
(yt − x′tβ)2

2h2(ζ′tα)
− 1

2h(ζ′tα)

]
h2(ζ′α)ζtζ

′
t,
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where h2(η) = dh1(η)/ dη. Evaluating the expectation of this block at θo = (β′o α0 0′)′

and noting that σ2
o = h(α0) we have

−
(

c2

2[(σ2
o)

2

)(
1

T

T∑
t=1

IE(ζtζ
′
t)

)
,

which can be consistently estimated by

−
(

c2

2(σ̈2
T )2

)(
1

T

T∑
t=1

(ζtζ
′
t)

)
.

The LM test is now readily derived from these results when the information matrix equality

holds.

Setting dt = ê2
t /σ̈

2
T − 1, the LM statistic can be expressed as

LMT =
1

2

(
T∑
t=1

dtζ
′
t

)(
T∑
t=1

ζtζ
′
t

)−1( T∑
t=1

ζtdt

)
D−→ χ2(p).

A novel feature of this statistic is that neither c nor the functional form of h matters in

the statistic. Hence, the Breusch-Pagan test is capable of testing for general conditional

heteroskedasticity. In terms of test computation, it is easily seen that the numerator of this

statistic is the (centered) regression sum of squares (RSS) of regressing dt on ζt. As such,

the Breusch-Pagan test can be conveniently computed by running an auxiliary regression

and using the resulting RSS/2 as the statistic. Intuitively, this amounts to checking whether

the variables in ζt are able to explain the square of the (standardized) OLS residuals.

Given conditional normality, Koenker (1981) noted that T−1
∑T

t=1 ê
4
t

IP−→ 3(σ2
o)

2 under

the null hypothesis, so that

1

T

T∑
t=1

d2
t =

1

T

T∑
t=1

ê4
t

(σ̈2
T )2
− 1

IP−→ 2.

Thus, a test that is asymptotically equivalent to the original Breusch-Pagan test is to replace

the denominator 2 in the statistic with
∑T

t=1 d
2
t /T . That is,

LMT = T

(
T∑
t=1

dtζ
′
t

)(
T∑
t=1

ζtζ
′
t

)−1( T∑
t=1

ζtdt

)/
T∑
t=1

d2
t ,

which can be computed as TR2, with R2 obtained from the regression of dt on ζt. As∑T
i=1 di = 0, the centered and non-centered R2 are in fact equivalent. This test is also

equivalent to TR2 with the centered R2 computed from regressing ê2
t on ζt. 2

Remarks:
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1. To compute the Breusch-Pagan test, one must specify a vector ζt that determines

the conditional variance. Here, ζt may contain some or all the variables in xt. If

ζt is chosen to include all elements of xt, their squares and pairwise products, the

resulting TR2 is also the White (1980) test for (conditional) heteroskedasticity of

unknown form. The White test can also be interpreted as an “information matrix

test” discussed below.

2. The Breusch-Pagan test is obtained under the condition that the information matrix

equality holds. We have seen that the information matrix equality may fail when there

is dynamic misspecification. Thus, the Breusch-Pagan test is not valid when, e.g., the

errors are serially correlated. For the LM test for conditional heteroskedasticity under

dynamic misspecification, see Exercise 9.6.

Example 9.11 (Breusch-Godfrey) Given the specification yt|xt ∼ N (x′tβ, σ
2), suppose

that one would like to check if the errors yt−x′tβ are serially correlated. Consider first the

AR(1) error: yt−x′tβ = ρ(yt−1−x′t−1β) +ut with |ρ| < 1 and {ut} a white noise. The null

hypothesis is ρ∗ = 0, i.e., no serial correlation. Instead of deriving the LM test formally,

we treat this as a specification with possibly omitted variables, as in Example 9.9. To this

end, consider a general specification that allows for serial correlations:

yt|yt−1,xt,xt−1 ∼ N (x′tβ + ρ(yt−1 − x′t−1β), σ2
u),

which reduces to the original specification when ρ = 0. Thus, the constrained specification

is the standard linear regression model yt = x′tβ, and the constrained QMLE of β is the

OLS estimator β̂T . Testing the null hypothesis that ρ∗ = 0 now amounts to testing whether

an additional variable yt−1 − x′t−1β should be included in the mean specification.

When the information matrix equality holds, an LM test can be obtained from an

auxiliary regression of the OLS residuals êt = yt−x′tβ̂T on xt and yt−1−x′t−1β. Replacing

β with its constrained estimator β̂T , an LM test is TR2, with R2 computed from the

regression of êt on xt and êt−1, and has the limiting χ2(1) distribution under the null

hypothesis. This is precisely the Breusch (1978) and Godfrey (1978) test for AR(1) errors.

More formally, we can derive the Breusch-Godfrey test along the line discussed in this

section; see Exercise 9.7. The Breusch-Godfrey test can be extended straightforwardly to

check if the errors follow an AR(p) process. By regressing êt on xt and êt−1, . . . , êt−p, the

resulting TR2 is the LM test when the information matrix equality holds and has a limiting

χ2(p) distribution.

Moreover, if the specification is yt − x′tβ = ut + αut−1, i.e., the errors follow an MA(1)

process, we can write

yt|xt, ut−1 ∼ N (x′tβ + αut−1, σ
2
u).
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The null hypothesis is α∗ = 0. Again, the constrained specification is the standard linear

regression model yt = x′tβ, and the constrained QMLE of β is still the OLS estimator β̂T .

It follows that the LM test of α∗ = 0 can be computed as TR2 with R2 obtained from the

regression of ût = yt − x′tβ̂T on xt and ût−1. This is identical to the LM test for AR(1)

errors. Similarly, the Breusch-Godfrey test for MA(p) errors is also the same as that for

AR(p) errors. 2

Remarks:

1. The Breusch-Godfrey tests are obtained under the condition that the information

matrix equality holds. If there is neglected conditional heteroskedasticity, the infor-

mation matrix equality would fail, so that the Breusch-Godfrey tests no longer have

a limiting χ2 distribution.

2. It can be shown that the square of Durbin’s h test is also an LM test. While Durbin’s h

test may not be feasible in practice, the Breusch-Godfrey test can always be computed.

9.4.3 Likelihood Ratio Test

As discussed in Section 6.4.3, the LR test is based on the comparison between the con-

strained and unconstrained specifications in terms of their log-likelihoods:

LRT = −2T [LT (θ̈T )− LT (θ̃T )]. (9.19)

Clearly, this test depends on the estimation results of both constrained and unconstrained

specification.

Recall that (9.14) gives a relation between the constrained and unconstrained QMLEs

which implies

√
T (θ̃T − θ̈T ) = HT (θ∗)−1R′

√
T λ̈T + oIP(1).

By (9.15), we obtain a relation between the Lagrangian multiplier and unconstrained

QMLE:

√
TR′λ̈T = R′[RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗) + oIP(1).

It follows that

√
T (θ̃T − θ̈T ) = HT (θ∗)−1R′[RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗) + oIP(1). (9.20)
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By Taylor expansion of LT (θ̈T ) about θ̃T , we have

−2T
[
LT (θ̈T )− LT (θ̃T )

]
= −2T∇LT (θ̃T )(θ̈T − θ̃T )− T (θ̈T − θ̃T )′HT (θ̃T )(θ̈T − θ̃T ) + oIP(1)

= −T (θ̈T − θ̃T )′HT (θ∗)(θ̈T − θ̃T ) + oIP(1),

because ∇LT (θ̃T ) = 0. Using (9.20) we have

−2T [LT (θ̈T )− LT (θ̃T )] = −T (θ̃T − θ∗)′R′[RHT (θ∗)−1R′]−1R(θ̃T − θ∗) + oIP(1),

where the right-hand side is essentially the Wald statistic with the normalizing variance-

covariance matrix −RHT (θ∗)−1R′. This shows that the LR test would have a limiting χ2

distribution when the information matrix equality holds.

Theorem 9.12 Given that Theorem 9.2 holds for the QMLE θ̃T , suppose that the infor-

mation matrix equality also holds. Then under the null hypothesis,

LRT
D−→ χ2(q),

where LRT is defined in (9.19) and q is the number of rows of R.

Theorem 9.12 differs from Theorem 9.6 and Theorem 9.8 in that it also requires the

validity of the information matrix equality. When the information matrix equality fails

to hold, −RHT (θ∗)−1R′ is not a proper normalizing matrix so that LRT does not have

a limiting χ2 distribution. In other words, the LR test given in (9.19) can not be made

robust to the failure of the information matrix equality. This should not be too surprising

because LT is constructed by specifying likelihood functions for {yt|xt} without considering

possible dynamic relations between yt and the past information not contained in xt. By

contrast, the Wald and LM tests can be made robust by employing a proper estimator of

the asymptotic variance-covariance matrix.

9.5 Hypothesis Testing: Non-Nested Models

In this section we consider the problem of testing non-nested specifications under the null

and alternative hypotheses:

H0 : yt|xt, ξt ∼ f(yt|xt;θ), θ ∈ Θ ⊆ Rp,

H1 : yt|xt, ξt ∼ ϕ(yt|ξt;ψ), ψ ∈ Ψ ⊆ Rq,

where xt and ξt are two sets of variables. These two specifications are non-nested in the

sense that one can not be derived from the other by imposing restrictions on the parameters.
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Thus, the tests discussed in the preceding section do not apply. A leading approach to

testing non-nested specification is based on the encompassing principle of Mizon (1984)

and Mizon and Richard (1986). This principle asserts that, if the model under the null

hypothesis is true, it should encompass the model under the alternative, such that a statistic

of the alternative model should be close to its pseudo-true value, the probability limit

evaluated under the null model. An encompassing test for non-nested hypotheses is then

based on the difference between a chosen statistic and the sample counterpart of its pseudo-

true value.

9.5.1 Wald Encompassing Test

When the chosen statistic is the QMLE of the alternative specification, the resulting en-

compassing test is a parameter encompassing test and also known as the Wald encompassing

test (WET), because it is analogous to the Wald test for nested models.

To illustrate the WET, we specialize on the following non-nested specifications of the

conditional mean function:

H0 : yt|xt, ξt ∼ N (x′tβ, σ
2), β ∈ B ⊆ Rk,

H1 : yt|xt, ξt ∼ N (ξ′tδ, σ
2), δ ∈ D ⊆ Rr,

where xt and ξt do not have elements in common. Let β̂T and δ̂T denote the QMLEs of the

parameters in the null and alternative models, respectively. Taking δ̂T as the statistic for an

encompassing test, we need to evaluate its probability limit under the null hypothesis. When

the null hypothesis is a correct specification, yt|xt, ξt ∼ N (x′tβo, σ
2
o), so that IE(ξtyt) =

IE(ξtx
′
t)βo. Hence, with a suitable LLN,

δ̂T =

(
1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξtyt

)
IP−→M−1

ξξ M ξxβo,

where M ξξ = limT→∞
∑T

t=1 IE(ξtξ
′
t)/T and M ξx = limT→∞

∑T
t=1 IE(ξtx

′
t)/T . This prob-

ability limit, denoted as δ(βo), is the pseudo-true value of δ̂T and usually referred to as

the pseudo-true parameter. It is clear that δ(βo) would not be the probability limit of δ̂T

if x′tβ is an incorrect specification of the conditional mean. Thus, whether δ̂T − δ(βo) is

sufficiently close to zero constitutes an evidence for or against the null hypothesis. Note,

however, that neither δ(βo) nor δ(β̂T ) is observable.

The discussion above suggests that an encompassing test can be based on the difference

between δ̂T and the sample counterpart of δ(β̂T ):

δ̂(β̂T ) =

(
1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξtx
′
t

)
β̂T .
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In particular,

δ̂T − δ̂(β̂T ) =

(
1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξt(yt − x′tβ̂T )

)
.

Let εt = yt − x′tβo and êt = yt − x′tβ̂T . Therefore, a test based on δ̂T − δ̂(β̂T ) can also

be interpreted as a test of the correlation between the errors of the null model, εt, and the

regressors of the alternative model, ξt. A large value of such correlation would indicate

that there is still information in ξt that is not captured by the null model.

To find the limiting distribution of δ̂T − δ̂(β̂T ), observe that

1√
T

T∑
t=1

ξtêt =
1√
T

T∑
t=1

ξtεt −
(

1

T

T∑
t=1

ξtx
′
t

)
√
T (β̂T − βo)

=
1√
T

T∑
t=1

ξtεt −
(

1

T

T∑
t=1

ξtx
′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1(
1√
T

T∑
t=1

xtεt

)
.

Setting ξ̂t = M ξxM
−1
xxxt, we can write

1√
T

T∑
t=1

ξtêt =
1√
T

T∑
t=1

(ξt − ξ̂t)εt + oIP(1).

With suitable LLN and CLT, we have under the null hypothesis that

1√
T

T∑
t=1

ξtêt
D−→ N (0,Σo),

where

Σo = σ2
o

(
lim
T→∞

1

T

T∑
t=1

IE
[
(ξt − ξ̂t)(ξt − ξ̂t)′

])
= σ2

o

(
M ξξ −M ξxM

−1
xxMxξ

)
.

Consequently, T 1/2[δ̂T − δ̂(β̂T )]
D−→ N

(
0,M−1

ξξ ΣoM
−1
ξξ

)
, and hence

T
[
δ̂T − δ̂(β̂T )

]′
M ξξΣ

−1
o M ξξ

[
δ̂T − δ̂(β̂T )

] D−→ χ2(r).

Replacing M ξξ, M ξx and Mxx with their sample counterparts and replacing σ2
o with

σ̂2
T =

∑T
t=1 ê

2
t /T , we obtain a consistent estimator for Σo:

Σ̂T = σ̂2
T

( 1

T

T∑
t=1

ξtξ
′
t

)
−
(

1

T

T∑
t=1

ξtx
′
t

)(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtξ
′
t

) .
The WET statistic reads

WET = T
[
δ̂T − δ̂(β̂T )

]′( 1

T

T∑
t=1

ξtξ
′
t

)
Σ̂
−1

T

(
1

T

T∑
t=1

ξtξ
′
t

)[
δ̂T − δ̂(β̂T )

]
,
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which has the limiting χ2(r) distribution under the null hypothesis.

When xt and ξt have s (s < r) elements in common,
∑T

t=1 ξtêt must have s elements

that are identically zero. Hence, rank(Σo) = r∗ ≤ r − s. In this case,

T
[
δ̂T − δ̂(β̂T )

]′
M ξξΣ

−
oM ξξ

[
δ̂T − δ̂(β̂T )

] D−→ χ2(r∗),

where Σ−o denotes the generalized inverse of Σo, and the WET can be computed as above

but with the generalized inverse of Σ̂T .

Under H1: yt|xt, ξt ∼ N (ξ′tδ, σ
2), the score function evaluated at the pseudo-true

parameter δ(βo) is (apart from a constant σ−2)

1

T

T∑
t=1

ξt[yt − ξ′tδ(βo)] =
1

T

T∑
t=1

ξt
[
yt − ξ′t

(
M−1

ξξ M ξxβo
)]
.

When the pseudo-true parameter is replaced by its estimator δ̂(β̂T ), the score function

becomes

1

T

T∑
t=1

ξt

yt − ξ′t
(

1

T

T∑
t=1

ξtξ
′
t

)−1(
1

T

T∑
t=1

ξtx
′
t

)
β̂T

 =
1

T

T∑
t=1

ξtêt.

The so-called score encompassing test (SET) is based on the normalized score and also

amounts to checking the correlation between the error of the null model and the regressor

of the alternative model; see Exercise 9.10. Note that the SET and WET are based on the

same ingredient and require estimation of the pseud-true parameter.

On the other hand, the applicability of the WET and SET may be quite limited in

practice. From the discussion above, it is clear that a crucial step in deriving a WET or a

SET is to evaluate the pseudo-true value of a parameter estimator. This is straightforward

in the present example because the estimator δ̂T has an analytic form. There are, however,

numerous examples in which a QMLE must be solved numerically. As examples, consider

the following specifications: (1) conditional normality with nonlinear specifications of the

conditional mean function:

H0 : yt|xt, ξt ∼ N
(
m(xt,β), σ2

)
, β ∈ B ⊆ Rk,

H1 : yt|xt, ξt ∼ N
(
µ(ξt, δ), σ2

)
, δ ∈ D ⊆ Rr;

(2) conditional normality with specifications for both the conditional mean and conditional

variance functions:

H0 : yt|xt, ξt ∼ N
(
x′tβ, h(xt,α)

)
, θ = (β′ α′)′ ∈ Θ ⊆ Rp,

H1 : yt|xt, ξt ∼ N
(
ξ′tδ, κ(ξt,γ)

)
, ψ = (δ′ γ ′)′ ∈ Ψ ⊆ Rq.

In these cases, the QMLEs do not have closed forms, and it would be practically difficult,

if not impossible, to evaluate the pseudo-true parameter. Consequently, computing a WET

or a SET may not be feasible.
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9.5.2 Pseudo-True Score Encompassing Test

Instead of testing parameter encompassing, Chen and Kuan (2002) considered the pseudo-

true value of the score function under the alternative hypothesis and proposed the pseudo-

true score encompassing (PSE) test. An advantage of basing an encompassing test on the

score function is that, while a QMLE may not have a closed form, the score function usually

does. It is therefore easier to derive and estimate the pseudo-true score function in practice.

Consider the following null and alternative hypotheses:

H0 : yt|xt, ξt ∼ f(xt;θ), θ ∈ Θ ⊆ Rp,

H1 : yt|xt, ξt ∼ ϕ(ξt,ψ), ψ ∈ Ψ ⊆ Rq.

Let sf,t(θ) = ∇ log f(yt|xt;θ) and sϕ,t(ψ) = ∇ logϕ(yt|ξt;ψ) be individual score functions

under the null and alternative hypotheses, respectively. Also let

∇Lf,T (θ) =
1

T

T∑
t=1

sf,t(θ), ∇Lϕ,T (ψ) =
1

T

T∑
t=1

sϕ,t(ψ).

The pseudo-true score function of ∇Lϕ,T (ψ) is

Jϕ(θ,ψ) = lim
T→∞

IEf(θ)

[
∇Lϕ,T (ψ)

]
,

where IEf(θ) denote the expectation that takes into account the null hypothesis. Given the

specification of ϕ, the pseudo-true parameter ψ(θo) is the KLIC minimizer when the null

hypothesis is specified correctly, and it must solve Jϕ(θo,ψ) = 0, i.e.,

Jϕ(θo,ψ(θo)) = 0.

Thus, whether Jϕ(θ̂T , ψ̂T ) is close to zero constitutes an evidence for or against the null

hypothesis. The PSE test is based on the sample counterpart of Jϕ(θ̂T , ψ̂T ). While the

SET relies on the score function evaluated at the pseudo-true parameter and is in effect a

test of parameter encompassing, the PSE test is truly a test of score encompassing because

the null model has been directly taken into account to derive the pseudo-true score function.

Following Wooldridge (1990), we can incorporate the null model into the the score

function under the alternative hypothesis and write

∇Lϕ,T (θ,ψ) =
1

T

T∑
t=1

d1,t(θ,ψ) +
1

T

T∑
t=1

d2,t(θ,ψ)ct(θ),

where d1,t and d2,t both depend on xt and ξt and IEf(θ)[ct(θ)|xt, ξt] = 0. As such,

Jϕ(θ,ψ) = lim
T→∞

1

T

T∑
t=1

IEf(θ)

[
d1,t(θ,ψ)

]
,
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and its sample counterpart is

Ĵϕ
(
θ̂T , ψ̂T

)
=

1

T

T∑
t=1

d1,t

(
θ̂T , ψ̂T

)
= − 1

T

T∑
t=1

d2,t

(
θ̂T , ψ̂T

)
ct
(
θ̂T
)
,

where the second equality follows because ∇Lϕ,T (ψ̂T ) = 0. Thus, the PSE test depends on

the QMLEs under the null and alternative hypotheses but not on the sample counterpart

of the pseudo-true parameter.

As an example, consider the non-nested specifications in Section 9.5.1. By incorporating

the null model into the score function under the alternative hypothesis we obtain

∇δLϕ,T (ψ) =
1

T

T∑
t=1

ξt(x
′
tβ − ξ′tδ) +

1

T

T∑
t=1

ξtεt

with d1,t(θ,ψ) = ξt(x
′
tβ − ξ′tδ), d2,t(θ,ψ) = ξt, and ct(θ) = εt. In this case, the PSE test

is based on

Ĵϕ
(
θ̂T , ψ̂T

)
=

1

T

T∑
t=1

ξt
(
x′tβ̂T − ξ′tδ̂T

)
= − 1

T

T∑
t=1

ξtêt,

as in the SET discussed earlier. On the other hand, when the conditional mean specifications

are nonlinear with m(xt,β) under the null and µ(ξt, δ) under the alternative, the SET is

not readily available because of the difficulty of deriving the pseudo-true parameter. Yet,

analogous to the result for linear specifications, the PSE test can be based on

1

T

T∑
t=1

∇δµ
(
ξt, δ̂T

)[
m
(
xt, β̂T

)
− µ

(
ξt, δ̂T

)]
= − 1

T

T∑
t=1

∇δµ
(
ξt, δ̂T

)
êt,

with êt = yt −m(xt, β̂T ) the nonlinear OLS residuals under the null model.

It can be verified that the linear expansion of T 1/2Ĵϕ
(
θ̂T , ψ̂T

)
about (θo,ψ(θo)) is

√
T Ĵϕ

(
θ̂T , ψ̂T

)
= − 1√

T

T∑
t=1

d2,t(θo,ψ(θo))ct(θo)−Ao

√
T (θ̂T − θo) + oIP(1),

where Ao = limT→∞ T
−1
∑T

t=1 IEf(θo)

[
d2,t(θo,ψ(θo))∇θct(θo)

]
. Note that the other terms

in the expansion that involve ct would vanish in the limit because they have zero mean.

Recall also that

√
T (θ̂T − θo) = −HT (θo)

−1 1√
T

T∑
t=1

sf,t(θo) + oIP(1),

where IEf(θo)[sf,t(θo)|xt, ξt] = 0. Collecting terms we have

√
T Ĵϕ

(
θ̂T , ψ̂T

)
= − 1√

T

T∑
t=1

bt(θo,ψ(θo)) + oIP(1),
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where bt(θo,ψ(θo)) = d2,t(θo,ψ(θo))ct(θo)−AoHT (θo)
−1sf,t(θo) is such that

IEf(θo)[bt(θo,ψ(θo))|xt, ξt] = 0.

By invoking a suitable CLT, T 1/2Ĵϕ
(
θ̂T , ψ̂T

)
has a limiting normal distribution with the

asymptotic covariance matrix:

Σo = lim
T→∞

1

T

T∑
t=1

IEf(θo)

[
bt(θo,ψ(θo))bt(θo,ψ(θo))

′],
which can be consistently estimated by

Σ̂T =
1

T

T∑
t=1

bt
(
θ̂T , ψ̂T

)
bt
(
θ̂T , ψ̂T

)′
.

It follows that the PSE test is

PSET = T Ĵϕ
(
θ̂T , ψ̂T

)′
Σ̂
−
T Ĵϕ

(
θ̂T , ψ̂T

) D−→ χ2(k),

where k is the rank of Σ̂T . Wooldridge (1990) proposed the conditional mean encompass-

ing test which is analogous to the PSE test for conditional mean specifications. Yet the

Wooldridge test is not applicable to testing other conditional moments.

Example 9.13 Consider the following non-nested specifications of conditional variance:

H0 : yt|xt, ξt ∼ N
(
0, h(xt,α)

)
,

H1 : yt|xt, ξt ∼ N
(
0, κ(ξt,γ)

)
.

For notation simplicity, we shall let ht denote h(xt,α) and κt denote κ(ξt,γ). When ht

and κt are evaluated at the respective QMLEs α̃T and γ̃T , we write ĥt and κ̂t. It can be

verified that

sh,t(α) =
∇αht
2h2

t

(y2
t − ht),

sκ,t(γ) =
∇γκt
2κ2

t

(y2
t − κt) =

∇γκt
2κ2

t

(ht − κt)︸ ︷︷ ︸
d1,t

+
∇γκt
2κ2

t︸ ︷︷ ︸
d2,t

(y2
t − ht)︸ ︷︷ ︸
ct

,

where IEf(θ)(y
2
t − ht|xt, ξt) = 0. The sample counterpart of the pseudo-true score function

is thus

1

T

T∑
t=1

∇γ κ̂t
2κ̂2

t

(y2
t − ĥt).

Thus, the PSE test amounts to checking whether ∇γκt/(2κ2
t ) are correlated with the “gen-

eralized” errors (y2
t − ht). The PSE statistic and Σ̂T , the estimate of the asymptotic

covariance matrix, are left to Exercise 9.11. 2
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Exercises

9.1 Let g and f be two density functions. Show that the KLIC II(g :f) does not obey the

triangle inequality, i.e., II(g :f) 6≤ II(g :h) + II(h :f) for any other density function h.

9.2 When N (x′tβ, σ
2) is a correct specification of yt|xt, show that IE[(yt−x′tβ)3] = 0 and

IE[(yt − x′tβ)4] = 3(σ2
o)

2 when β is evaluated at βo.

9.3 In Example 9.4, the upper-left block of BT (θo) is
∑T

t=1 IE(xtx
′
t)/(Tσ

2
o). What would

this block be if there is dynamic misspecification? Would BT (θo) be a block-diagonal

matrix if there is dynamic misspecification?

9.4 Suppose that N (x′tβ, h(ζ′tα)) is a correct specification of yt|(xt, ζt). Derive ∇LT (θ),

∇2LT (θ), HT (θ), and BT (θ).

9.5 Consider the specification yt|xt ∼ N (x′tβ, h(ζ ′tα)). What conditions are needed to

ensure block diagonality of HT (θ∗) and BT (θ∗)?

9.6 Suppose that N (x′tβ, h(ζ′tα)) is a correct specification of yt|(xt, ζt), where ζ′tα =

α0 +
∑p

i=1 ζtiαi. Derive the LM test for α1 = · · · = αp = 0 when there is dynamic

misspecification.

9.7 In the context of Example 9.11, derive the Breusch-Godfrey test for AR(1) errors.

9.8 Consider the specification yt|xt, yt−1 ∼ N (γyt−1 + x′tβ, σ
2) and the AR(1) errors:

yt − αyt−1 − x′tβ = ρ(yt−1 − αyt−2 − x′t−1β) + ut,

with |ρ| < 1 and {ut} a white noise. Derive the LM test for the null hypothesis ρ∗ = 0

and show its square root is Durbin’s h test; see Section 4.3.2.

9.9 Suppose that the specification is

yt|xt,xt−1, yt−1 ∼ N
(
x′tβ, α0 + α1(yt−1 − x′t−1β)2

)
.

Letting et = yt−x′tβ, this specification postulates that the conditional variance of yt is

α0+α1e
2
t−1. This is an ARCH (AutoRegressive Conditional Heteroskedasticity) model

of order one introduced in Engle (1982). Derive the LM test for the null hypothesis

α1 = 0, i.e., no ARCH effect. An ARCH(p) model postulates that the conditional

variance of yt is α0 +α1e
2
t−1 + · · ·+αpe2

t−p. What is the LM test of α1 = · · · = αp = 0?

9.10 Given the non-nested specifications in Section 9.5.1, construct the SET based on

T−1/2
∑T

t=1 ξtêt, where êt are the OLS residuals under H0, and derive the asymptotic

distribution of the SET.
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9.11 Derive the required asymptotic covariance matrix for the PSE test in Example 9.13

and state the PSE statistic.

c© Chung-Ming Kuan, 2007–2010



9.5. HYPOTHESIS TESTING: NON-NESTED MODELS 249

References

Amemiya, Takeshi (1985). Advanced Econometrics, Cambridge, MA: Harvard University

Press.

Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear models, Australian

Economic Papers, 17, 334–355.

Breusch, T. S. and A. R. Pagan (1979). A simple test for heteroscedasticity and random

coefficient variation, Econometrica, 47, 1287–1294.

Chen, Yi-Ting and Chung-Ming Kuan (2002). The pseudo-true score encompassing test for

non-nested hypotheses, Journal of Econometrics, 106, 271–295.

Chen, Yi-Ting and Chung-Ming Kuan (2007). Corrigendum, Journal of Econometrics,

forthcoming.

Engle, Robert F. (1982). Autoregressive conditional heteroskedasticity with estimates of

the variance of U.K. inflation, Econometrica, 50, 987–1007.

Godfrey, L. G. (1978). Testing against general autoregressive and moving average error

models when the regressors include lagged dependent variables, Econometrica, 46,

1293–1301.

Godfrey, L. G. (1988). Misspecification Tests in Econometrics: The Lagrange Multiplier

Principle and Other Approaches, New York: Cambridge University Press.

Gourieroux, Christian and Alain Monfort (1995). Statistics and Econometric Models, Vol-

ume 1 and 2, Cambridge: Cambridge University Press.

Hamilton, James D. (1994). Time Series Analysis, Princeton: Princeton University Press.

Hausman, Jerry A. (1978). Specification tests in econometrics, Econometrica, 46, 1251–

1272.

Koenker, Roger (1981). A note on studentizing a test for heteroscedasticity, Journal of

Econometrics, 17, 107–112.

Mizon, Grayham E. (1984). The encompassing approach in econometrics, in: D. F. Hendry

and K. F. Wallis (eds.), Econometrics and Quantitative Economics, pp. 135–172,

Oxford: Basil Blackwell.

Mizon, Grayham E. and Jean-Francois. Richard (1986). The encompassing principle and

its application to testing non-nested hypotheses, Econometrica, 54, 657–678.

c© Chung-Ming Kuan, 2007–2010



250 CHAPTER 9. QUASI-MAXIMUM LIKELIHOOD THEORY

White, Halbert (1980). A heteroskedasticity-consistent covariance matrix estimator and a

direct test for heteroskedasticity, Econometrica, 48, 817–838.

White, Halbert (1982). Maximum likelihood estimation of misspecified models, Economet-

rica, 50, 1–25.

White, Halbert (1994). Estimation, Inference, and Specification Analysis, New York: Cam-

bridge University Press.

Wooldridge, J. M. (1990). An encompassing approach to conditional mean tests with

applications to testing non-nested hypotheses, Journal of Econometrics, 45, 331–350.

c© Chung-Ming Kuan, 2007–2010


