
Chapter 2

Statistical Concepts

In this chapter we review some probability and statistics results to be used in subsequent

chapters. We focus on the properties of multivariate random vectors and discuss the basic

ideas of parameter estimation and hypothesis testing. Most of statistics textbooks also cover

similar topics but are in the univariate context; beginning graduate students in economics

may find Amemiya (1994) a useful reference. More advanced topics in probability theory

will be left to Chapter 5.

2.1 Distribution Functions

Given a random experiment, let Ω denote the collection of all its possible outcomes and IP

denote the probability measure assigned to sets of outcomes (subsets of Ω); a subset of Ω is

referred to as an event. For the event A, IP(A) is a measure of the likelihood of A such that

0 ≤ IP(A) ≤ 1. The larger is IP(A), the more likely is the event A to occur. A d-dimensional

random vector (Rd-valued random variable) is a function defined on Ω and takes values in

Rd. Thus, the value of a random vector depends on the random outcome ω ∈ Ω. Formal

definitions of probability space and random variables are given in Section 5.1.

The (joint) distribution function of the Rd-valued random variable z is the non-decreasing,

right-continuous function Fz such that for ζ = (ζ1 . . . ζd)
′ ∈ Rd,

Fz(ζ) = IP{ω ∈ Ω: z1(ω) ≤ ζ1, . . . , zd(ω) ≤ ζd},

with

lim
ζ1→−∞, ..., ζd→−∞

Fz(ζ) = 0, lim
ζ1→∞, ..., ζd→∞

Fz(ζ) = 1.

Note that the distribution function of z is a standard point function defined on Rd and

provides a convenient way to characterize the randomness of z. The (joint) density function
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18 CHAPTER 2. STATISTICAL CONCEPTS

of Fz, if exists, is the non-negative function fz such that

Fz(ζ) =

∫ ζd

−∞
· · ·
∫ ζ1

−∞
fz(s1, . . . , sd) ds1 · · · dsd,

where the right-hand side is a Riemann integral. Clearly, the density function fz must be

integrated to one on Rd.

The marginal distribution function of the i th component of z is

Fzi(ζi) = IP{ω ∈ Ω: zi(ω) ≤ ζi} = Fz(∞, . . . ,∞, ζi,∞, . . . ,∞).

Thus, the marginal distribution function of zi is the joint distribution function without

restrictions on the other elements zj , j 6= i. The marginal density function of zi is the

non-negative function fzi such that

Fzi(ζi) =

∫ ζi

−∞
fzi(s) ds.

It is readily seen that the marginal density function fzi can also be obtained from the

associated joint density function by integrating out the other elements:

fzi(si) =

∫
R
· · ·
∫
R
fz(s1, . . . , sd) ds1 · · · dsi−1 dsi+1 · · · dsd.

If there are two random vectors z1 and z2, they are said to be independent if, and only

if, their joint distribution function is the product of all marginal distribution functions:

Fz1,z2(ζ1, ζ2) = Fz1(ζ1)Fz2(ζ2);

otherwise, they are dependent. If random vectors possess density functions, they are inde-

pendent if, and only if, their joint density function is also the product of marginal density

functions. Intuitively, there exists absolutely no relationship between two independent

random vectors. As a consequence, functions of independent random vectors remain inde-

pendent, as stated in the result below.

Lemma 2.1 If z1 and z2 are independent random vectors, then their transformations,

h1(z1) and h2(z2), are also independent random variables (vectors).

2.2 Moments

Given the d-dimensional random vector z with the distribution function Fz, the expectation

of the i th element zi is defined as

IE(zi) =

∫
· · ·
∫

Rd

ζi dFz(ζ1, . . . , ζd),
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2.2. MOMENTS 19

where the right-hand side is a Stieltjes integral; for more details about different integrals

we refer to Rudin (1976). As this integral equals∫
R
ζi dFz(∞, . . . ,∞, ζi,∞, . . . ,∞) =

∫
R
ζi dFzi(ζi),

the expectation of zi can be taken with respect to either the joint distribution function

Fz or the marginal distribution function Fzi . The expectation of a random variable is a

location measure because it is a weighted average of all possible values of this variable, with

the weights being associated probabilities.

We say that the random variable zi has a finite expected value (or the expectation IE(zi)

exists) if IE |zi| < ∞. A random variable need not have a finite expected value; if it does,

this random variable is said to be integrable. More generally, the expectation of a random

vector is defined elementwise. That is, for a random vector z, IE(z) exists if all IE(zi),

i = 1, . . . , d, exist (z is integrable if all zi, i = 1, . . . , d, are integrable).

It is easily seen that the expectation operator does not have any effect on a constant;

i.e., IE(b) = b for any constant b. For integrable random variables zi and zj , the expectation

operator is monotonic in the sense that

IE(zi) ≤ IE(zj),

for any zi ≤ zj with probability one. Moreover, the expectation operator is linear in the

sense that

IE(azi + bzj) = a IE(zi) + b IE(zj),

where a and b are two real numbers. This property immediately generalizes to integrable

random vectors.

Lemma 2.2 Let A (n × d) and B (n × c) be two non-stochastic matrices. Then for any

integrable random vectors z (d× 1) and y (c× 1),

IE(Az +By) = A IE(z) +B IE(y);

in particular, if b is an n-dimensional nonstochastic vector, then IE(Az+b) = A IE(z)+b.

More generally, let y = g(z) be a well-defined, vector-valued function of z. The expec-

tation of y is

IE(y) = IE[g(z)] =

∫
Rd

g(ζ) dFz(ζ).
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20 CHAPTER 2. STATISTICAL CONCEPTS

When g(z) = zki , IE[g(z)] = IE(zki ) is known as the k th moment of zi, where k need not

be an integer. In particular, IE(zi) is the first moment of zi. When a random variable has

finite k th moment, its moments of order less than k are also finite. When the k th moment

of a random variable does not exist, then the moments of order greater than k also fail to

exist. See Section 2.3 for some examples of random variables that possess only low order

moments. A random vector is said to have finite k th moment if its elements all have finite

k th moment. A random variable with finite second moment is said to be square integrable;

a random vector is square integrable if its elements are all square integrable.

The k th central moment of zi is IE[zi−IE(zi)]
k. In particular, the second central moment

of the square integrable random variable zi is

IE[zi − IE(zi)]
2 = IE(z2

i )− [IE(zi)]
2,

which is a measure of dispersion of the values of zi. The second central moment is also

known as variance, denoted as var(·). The square root of variance is standard deviation.

It can be verified that, given the square integrable random variable zi and real numbers a

and b,

var(azi + b) = var(azi) = a2 var(zi).

This shows that variance is location invariant but depends on the scale (measurement units)

of random variables.

When g(z) = zizj , IE[g(z)] = IE(zizj) is the cross moment of zi and zj . The cross

central moment of zi and zj is

IE[(zi − IE(zi))(zj − IE(zj))] = IE(zizj)− IE(zi) IE(zj),

which is a measure of the co-variation between these two random variables. The cross

central moment of two random variables is known as their covariance, denoted as cov(·, ·).
Clearly, cov(zi, zj) = cov(zj , zi) and cov(zi, zi) = var(zi). It can be seen that for real

numbers a, b, c, d,

cov(azi + b, czj + d) = cov(azi, czj) = ac cov(zi, zj).

Thus, covariance is also location invariant but not scale invariant.

Observe that for any real numbers a and b,

var(azi + bzj) = a2 var(zi) + b2 var(zj) + 2ab cov(zi, zj),

so that

var(zi − azj) = var(zi) + a2 var(zj)− 2a cov(zi, zj),
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2.2. MOMENTS 21

which must be non-negative. Setting a = cov(zi, zj)/ var(zj), we have

var(zi)− cov(zi, zj)
2/ var(zj) ≥ 0.

In particular, when zi = azj +b for some real numbers a and b, we have var(zi) = a2 var(zj)

and cov(zi, zj) = a var(zj), so that

var(zi)− cov(zi, zj)
2/ var(zj) = 0.

This yields the Cauchy-Schwarz inequality for square integrable random variables.

Lemma 2.3 (Cauchy-Schwarz) Let zi, zj be two square integrable random variables. Then,

cov(zi, zj)
2 ≤ var(zi) var(zj),

where the equality holds when zi = azj + b for some real numbers a and b.

cf. the Cauchy-Schwarz inequality (Lemma 1.1) in Section 1.2. This also suggests that when

two random variables are square integrable, their covariance must be finite.

The correlation coefficient of zi and zj is defined as

corr(zi, zj) =
cov(zi, zj)√

var(zi) var(zj)
.

Clearly, a correlation coefficient provides the same information as its corresponding covari-

ance. Moreover, we have from Lemma 2.3 that

−1 ≤ corr(zi, zj) ≤ 1.

For two random variables zi and zj and real numbers a, b, c, d,

corr(azi + b, czj + d) = corr(azi, czj) =
ac

|a| |c| corr(zi, zj).

Thus, the correlation coefficient is not only location invariant but also scale invariant,

apart from the sign change. If corr(zi, zj) = 0, zi and zj are said to be uncorrelated. If

corr(zi, zj) > 0, zi and zj are said to be positively correlated; if corr(zi, zj) < 0, zi and zj

are negatively correlated. When zi = azj + b, corr(zi, zj) = 1 if a > 0 and −1 if a < 0. In

both cases, zi and zj are em perfectly correlated.

For a d-dimensional, square integrable random vector z, its variance-covariance matrix

is

var(z) = IE[(z − IE(z))(z − IE(z))′]

=


var(z1) cov(z1, z2) · · · cov(z1, zd)

cov(z2, z1) var(z2) · · · cov(z2, zd)
...

...
. . .

...

cov(zd, z1) cov(zd, z2) · · · var(zd)

 ,
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22 CHAPTER 2. STATISTICAL CONCEPTS

which must be symmetric because cov(zi, zj) = cov(zj , zi). As (z − IE(z))(z − IE(z))′ is

positive semi-definite with probability one, the monotonicity of the expectation operator

implies that var(z) is positive semi-definite.

For two random vectors y (c× 1) and z (d× 1), the d× c covariance matrix of z and y

is

cov(z,y) = IE[(z − IE z)(y − IE y)′] = IE(zy′)− IE(z) IE(y′).

Two random vectors are uncorrelated if their covariance matrix is a zero matrix. If y and

z are independent, their joint distribution function is the product of individual distribution

functions. It follows that the cross moment of y and z is the product of their individual

first moment: that

IE(zy′) = IE(z) IE(y′).

This shows that independence implies cov(z,y) = 0. Uncorrelated random vectors are not

necessarily independent, however.

Based on the properties of variance and covariance for random variables, we have the

following result for random vectors.

Lemma 2.4 Let A (n × d), B (n × c), and C (m × c) be non-stochastic matrices and b

an n-dimensional non-stochastic vector. Then for any square integrable random vectors z

(d× 1) and y (c× 1),

var(Az +By) = A var(z)A′ +B var(y)B′ + 2A cov(z,y)B′,

var(Az + b) = var(Az) = A var(z)A′.

Given two square integrable random vectors z and y, suppose that var(y) is positive

definite. As the variance-covariance matrix of (z′ y′)′ must be a positive semi-definite

matrix,

[I − cov(z,y) var(y)−1]

[
var(z) cov(z,y)

cov(y, z) var(y)

][
I

− var(y)−1 cov(y, z)

]

= var(z)− cov(z,y) var(y)−1 cov(y, z)

is also a positive semi-definite matrix. This establishes the multivariate version of the

Cauchy-Schwarz inequality for square integrable random vectors.

c© Chung-Ming Kuan, 2007, 2009, 2010



2.3. SPECIAL DISTRIBUTIONS 23

Lemma 2.5 (Cauchy-Schwarz) Let y, z be two square integrable random vectors. Then,

var(z)− cov(z,y) var(y)−1 cov(y, z)

is a positive semi-definite matrix.

A random vector is said to be degenerate (have a singular distribution) if its variance-

covariance matrix is singular. Let Σ be the variance-covariance matrix of the d-dimensional

random vector z. If Σ is singular, then there exists a non-zero vector c such that Σc = 0.

For this particular c, we have

c′Σc = IE[c′(z − IE(z))]2 = 0.

It follows that c′[z − IE(z)] = 0 with probability one; i.e, the elements of z are linearly de-

pendent with probability one. This implies that all the probability mass of z is concentrated

in a subspace of dimension less than d.

2.3 Special Distributions

In this section we discuss several useful distributions. A random vector z is said to have a

multivariate normal (Gaussian) distribution with mean µ and variance-covariance matrix

Σ, denoted as z ∼ N (µ,Σ), if it has the density function

1

(2π)d/2 det(Σ)1/2
exp

(
−1

2
(z − µ)′Σ−1(z − µ)

)
.

For d = 1, this is just the density of the univariate normal random variable. Note that

the multivariate normal density function is completely characterized by its mean vector

and variance-covariance matrix. A normal random variable has moments of all orders; in

particular, its even-order central moments are

IE(z − µ)k = (k − 1) · · · 3 · 1 var(z)k/2, k ≥ 2 and k is even,

and its odd-order central moments are all zeros. A normal random variable with mean zero

and variance one is usually called the standard normal random variable.

When Σ is a diagonal matrix with diagonal elements σii, i = 1, . . . , d, the elements of

z are uncorrelated. In this case, the density function of z is simply the product of the

marginal density functions of z1, . . . , zd:

1

(2π)d/2(
∏d
i=1 σii)

1/2
exp

(
−1

2

d∑
i=1

(zi − µi)2

σii

)
.
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24 CHAPTER 2. STATISTICAL CONCEPTS

That is, for random variables that are jointly normally distributed, uncorrelatedness implies

independence. When σii = σ2
o , a constant, the joint density above further simplifies to

1

(2πσ2
o)
d/2

exp

(
− 1

2σ2
o

d∑
i=1

(zi − µi)2

)
.

Note that uncorrelated random variables are not necessarily independent if they are not

jointly normally distributed.

The result below shows that proper linear transformations of normal random vectors

remain normally distributed.

Lemma 2.6 Let z be a d-dimensional random vector distributed as N (µ,Σ). Also let

A be an n × d non-stochastic matrix with full row rank n < d and b be a d-dimensional

non-stochastic vector. Then,

Az + b ∼ N (Aµ+ b,AΣA′).

Lemma 2.6 implies that, when z ∼ N (µ,Σ), any sub-vector (element) of z also has a

multivariate (univariate) normal distribution; the converse need not be true, however. It is

also easily seen that

Σ−1/2(z − µ) ∼ N (0, Id),

where Σ−1/2 is such that Σ−1/2ΣΣ−1/2 = I, as defined in Section 1.7. Proper standard-

ization of a normal random vector thus yields a normal random vector with independent

elements. If A is not of full row rank, var(Az) = AΣA′ does not have full rank, so that

Az is degenerate.

Let z ∼ N (µ, Id). The sum of squares of the elements of z is the non-central chi-square

random variable with d degrees of freedom and the non-centrality parameter ν = µ′µ,

denoted as

z′z ∼ χ2(d; ν).

The density function of χ2(d; ν) is

f(x) = exp
(
− ν + x

2

)
xd/2−1 1

2d/2

∞∑
i=0

xiνi

i! 22i Γ(i+ d/2)
, x > 0,

where Γ is the gamma function with

Γ(n) =

∫ ∞
0

e−xxn−1 dx.
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2.3. SPECIAL DISTRIBUTIONS 25

It can be shown that a χ2(d; ν) random variable has mean (d + ν) and variance 2d + 4ν.

When µ = 0, the non-centrality parameter ν = 0, and χ2(d; 0) is known as the central

chi-square random variable, denoted as χ2(d). The density of χ2(d) is

f(x) = exp
(
− x

2

)
xd/2−1 1

2d/2 Γ(d/2)
, x > 0,

with mean d and variance 2d. The result below follows directly from Lemma 2.6.

Lemma 2.7 Let z be a d-dimensional random vector distributed as N (µ,Σ). Then,

z′Σ−1z ∼ χ2(d;µ′Σ−1µ);

in particular, if µ = 0, z′Σ−1z ∼ χ2(d).

Let w and x be two independent random variables such that w ∼ N (µ, 1) and x ∼ χ2(n).

Then

w√
x/n

∼ t(n;µ),

the non-central t distribution with n degrees of freedom and the non-centrality parameter

µ. The density function of t(n;µ) is

f(x) =
nn/2 exp(−µ2/2)

Γ(n/2)Γ(1/2)(n+ x2)(n+1)/2

∞∑
i=0

Γ
(n+ i+ 1

2

)µi
i!

(
2x2

n+ x2

)i/2
(sign x)i.

When µ = 0, t(n;µ) reduces to the central t distribution, denoted as t(n), which has the

density

f(x) =
Γ((n+ 1)/2)

Γ(n/2)Γ(1/2)n1/2

(
1 +

x2

n

)−(n+1)/2

.

The t(n) random variable is symmetric about zero, and its k th moment exists only for

k < n; when n > 2, its mean is zero and variance is n/(n− 2).

As n tends to infinity, it can be seen that(
1 +

x2

n

)−(n+1)/2

=

[(
1 +

x2

n

)n/x2]−x2/2 (
1 +

x2

n

)−1/2
→ exp(−x2/2).

Also note that Γ(1/2) = π1/2 and that for large n,

Γ((n+ 1)/2)

Γ(n/2)
≈ (n/2)1/2.

Thus, when n tends to infinity, the density of t(n) converges to

1√
2π

exp(−x2/2),
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26 CHAPTER 2. STATISTICAL CONCEPTS

the density of the standard normal random variable. When n = 1, the density for t(1)

becomes

f(x) =
1

π[1 + x2]
.

This is also the density of the Cauchy random variable with the location parameter 0. The

Cauchy random variable is a very special random variable because it does not even have

finite first moment.

Let z1 and z2 be two independent random variables such that z1 ∼ χ2(n1; ν1) and

z2 ∼ χ2(n2; ν2). Then,

z1/n1

z2/n2

∼ F (n1, n2; ν1, ν2),

the non-central F distribution with the degrees of freedom n1 and n2 and the non-centrality

parameters ν1 and ν2. The k th moment of F (n1, n2; ν1, ν2) exists when k < n2/2. In many

statistical applications we usually encounter F (n1, n2; ν1, 0). When n2 > 2, the mean of

F (n1, n2; ν1, 0) is

n2(n1 + ν1)

n1(n2 − 2)
;

when n2 > 4, the variance is

2
(n2

n1

)2 (n1 + ν1)2 + (n1 + 2ν1)(n2 − 2)

(n2 − 2)2(n2 − 4)
.

If both ν1 and ν2 are zero, we have the central F distribution F (n1, n2). When n2 > 2,

F (n1, n2) has mean n2/(n2 − 2); when n2 > 4, it has variance

2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
.

Note that if a random variable is distributed as t(n), its square has the F (1, n) distribution.

2.4 Likelihood

Suppose that we postulate p as the joint probability function of the discrete random vari-

ables z1, . . . , zT with the parameter vector θ. Plugging the observed values ζ1, . . . , ζT of

these random variables into p we obtain a function of θ:

L(θ) := p(ζ1, . . . , ζT ;θ).

This function represents the probability (likelihood) that those observed values are gener-

ated from the postulated probability function p; different parameter values of course result

in different probability values. Thus, L(θ) is also known as the likelihood function of θ.
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2.4. LIKELIHOOD 27

Similarly, let f denote the postulated joint density function of the random vectors

z1, . . . ,zT with the parameter vector θ. Then given the observed values ζ1, . . . , ζT , the

likelihood function of θ is

L(θ) := f(ζ1, . . . , ζT ;θ).

In what follows, we will use L and f interchangeably. Note, however, that a postulated

density function need not be the true density function that generates the random variables.

When f is differentiable and non-zero with probability one, the gradient vector of

logL(θ),

∇θ logL(θ) =
1

L(θ)
∇θL(θ),

is known as the score vector, denoted as s(ζ1, . . . , ζT ;θ). We can then write

s(ζ1, . . . , ζT ;θ)f(ζ1, . . . , ζT ;θ) = ∇θf(ζ1, . . . , ζT ;θ).

For a given θ, the score vector varies with the observed values ζ1, . . . , ζT , so that it is also

a random vector. We therefore denote the score vector as s(z1, . . . ,zT ;θ).

When differentiation and integration can be interchanged, we have for each θ,∫
Rd

· · ·
∫
Rd

s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

=

∫
Rd

· · ·
∫
Rd

∇θf(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

= ∇θ
(∫

Rd

· · ·
∫
Rd

f(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

)
= ∇θ 1

= 0.

The left-hand side is in effect the expectation of the score vector with respect to f . If there

exists θo such that f(ζ1, . . . , ζT ;θo) is the true density function, we immediately obtain

the following result.

Lemma 2.8 If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint density function of

the random vectors z1, . . . ,zT . Then under regularity conditions,

IE[s(z1, . . . ,zT ;θo)] = 0,

where s(z1, . . . ,zT ;θo) is the score evaluated at θo, and IE is taken with respect to the true

density function.
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28 CHAPTER 2. STATISTICAL CONCEPTS

Remark: The validity of Lemma 2.8 requires differentiability of the likelihood function and

interchangeability of differentiation and integration; see, e.g., Amemiya (1985) for some

sufficient conditions of these properties. Lemma 2.9 below also requires similar conditions.

It is easy to see that the Hessian matrix of the log-likelihood function is

∇2
θ logL(θ) =

1

L(θ)
∇2
θL(θ)− 1

L(θ)2
[∇θL(θ)][∇θL(θ)]′,

where the second term is just the outer product of the score vector. Again by interchanging

differentiation and integration, we have for each θ that∫
Rd

· · ·
∫
Rd

1

L(θ)
∇2
θL(θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=

∫
Rd

· · ·
∫
Rd

∇2
θf(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= ∇2
θ

(∫
Rd

· · ·
∫
Rd

f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

)
= ∇2

θ 1

= 0.

It follows that

−
∫
Rd

· · ·
∫
Rd

∇2
θ logL(θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=

∫
Rd

· · ·
∫
Rd

s(ζ1, . . . , ζT ;θ)s(ζ1, . . . , ζT ;θ)′f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT ,

where the left-hand side is the negative of the expected Hessian matrix and the right-

hand side is the variance-covariance matrix of s(z1, . . . ,zT ;θ), both with respect to the

postulated density function f . If f(ζ1, . . . , ζT ;θo) is the true density function, the variance-

covariance matrix of s(z1, . . . ,zT ;θo) is known as the information matrix. The result above,

together with Lemma 2.8, yields the so-called information matrix equality.

Lemma 2.9 If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint density function of

the random vectors z1, . . . ,zT . Then under regularity conditions,

IE[∇2
θ logL(θo)] + var(s(z1, . . . ,zT ;θo)) = 0,

where ∇2
θ logL(θo) is the Hessian matrix of logL evaluated at θo, and IE and var are taken

with respect to the true density function.

Remark: When f is not the true density function, Lemma 2.8 and 2.9 need not hold. That

is, neither IE[s(z1, . . . ,zT ;θ)] nor

IE[∇2
θ logL(θ)] + var(s(z1, . . . ,zT ;θ))

is necessarily zero.
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2.5 Estimation

2.5.1 Point Estimation

Let θo denote a parameter vector associated with the joint distribution of T random vectors

z1, . . . ,zT . A point estimator (or simply an estimator) for θo is a function of these random

vectors:

θ̂ = h(z1, . . . ,zT ),

where h is some function. An estimator is clearly a random vector. Once the observed

values of z1, . . . ,zT are plugged into this function, we obtain a point estimate. That is, a

point estimate is just a particular value that an estimator may assume.

A simple principle of constructing estimators for moments is known as analog estima-

tion. This principle suggests to estimate population moments using their finite-sample

counterparts. For example, given a sample of T random variables z1, . . . , zT with the com-

mon k th moment IE(zk1 ), the analog estimator for IE(zk1 ) is simply the sample average of

zki :

1

T

T∑
t=1

zki .

In particular, the sample mean z̄ is the analog estimator for the population mean.

To estimate the parameter vector θo, it is also natural to maximize the associated like-

lihood function L(θ). The resulting solution is known as the maximum likelihood estimator

(MLE) for θo, denoted as θ̃ or θ̃T , where the subscript T indicates that this is an esti-

mator based on a sample of T observations. As the maximum of a function is invariant

with respect to monotonic transformations, it is quite common to compute the MLE by

maximizing the log-likelihood function logL(θ). It follows that the score vector evaluated

at θ̃ must be zero; i.e., s(ζ1, . . . , ζT ; θ̃) = 0.

2.5.2 Criteria for Point Estimators

Let θ̂ be an estimator for θo. The difference IE(θ̂)−θo is called the bias of θ̂. An estimator

is said to be unbiased if it has zero bias, i.e.,

IE(θ̂) = θo;

otherwise, it is biased. Unbiasedness does not imply that an estimate must be close to the

true parameter. In fact, it is even possible that all the values of an unbiased estimator

deviate from the true parameter by a constant.
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Given two unbiased estimators, it is therefore natural to choose the one whose values

are more concentrated around the true parameter. For real-valued unbiased estimators,

this amounts to selecting an estimator with a smaller variance. If they are vector-valued,

we adopt the following efficiency criterion. An unbiased estimator θ̂1 is said to be “better”

(more efficient) than an unbiased estimator θ̂2 if

var(a′θ̂2) ≥ var(a′θ̂1),

for all non-zero vectors a. This is equivalent to the condition that

a′[var(θ̂2)− var(θ̂1)]a ≥ 0,

for all non-zero vectors a. Thus, an unbiased estimator θ̂1 is more efficient than an unbiased

estimator θ̂2 if var(θ̂2)−var(θ̂1) is a positive semi-definite matrix. Given a class of unbiased

estimators, if one of them is better than all other estimators in that class, it is the “best”

(most efficient) within this class.

More generally, we can compare estimators based on mean squared error (MSE):

IE[(θ̂ − θo)(θ̂ − θo)′]

= IE[(θ̂ − IE(θ̂) + IE(θ̂)− θo)(θ̂ − IE(θ̂) + IE(θ̂)− θo)′]

= var(θ̂) + [IE(θ̂)− θo] [IE(θ̂)− θo]′,

where the second term is the outer product of the bias vector. An estimator θ̂1 (not

necessarily unbiased) is said to be better (more efficient) than θ̂2 if MSE(θ̂2)−MSE(θ̂1) is

a positive semi-definite matrix. Clearly, the MSE criterion reduces to the previous variance-

based criterion when estimators are unbiased.

The following result shows that the inverse of the information matrix is a lower bound,

also known as the Cramér-Rao lower bound, for the variance-covariance matrix of any

unbiased estimator.

Lemma 2.10 (Cramér-Rao) If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint

density function of the random vectors z1, . . . ,zT . Let θ̂ denote an unbiased estimator for

θ based on these random vectors. If var(s(z1, . . . ,zT ;θo)) is positive definite,

var(θ̂)− var(s(z1, . . . ,zT ;θo))
−1

is a positive semi-definite matrix.
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Proof: We first note that for any unbiased estimator θ̂ for θ,∫
Rd

· · ·
∫
Rd

(θ̂ − θ) s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=

∫
Rd

· · ·
∫
Rd

θ̂ s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= ∇θ
(∫

Rd

· · ·
∫
Rd

θ̂ f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

)
= ∇θθ

= I,

where the third equality holds because θ̂ is unbiased for θ when f(ζ1, . . . , ζT ;θ) is the

associated density function. Thus,

cov(θ̂, s(z1, . . . ,zT ;θo)) = I.

The assertion now follows from Lemma 2.5, the multivariate version of the Cauchy-Schwarz

inequality. 2

By Lemma 2.10, an unbiased estimator is the best if its variance-covariance matrix achieves

the Cramér-Rao lower bound; the converse need not be true, however.

2.5.3 Interval Estimation

While a point estimate is a particular value representing the unknown parameter, interval

estimation results in a range of values that may contain the unknown parameter with

certain probability.

Suppose that there is an estimate θ̂ for the true parameter θo and a function q(θ̂, θo)

whose distribution is known. Then, given a probability value γ, we can find suitable values

a and b such that

IP{a < q(θ̂, θo) < b} = γ.

Solving the inequality above for θo we may obtain an interval containing θo. This leads to

the probability statement:

IP{α < θo < β} = γ,

where α and β depend on a, b, and θ̂. We can then conclude that we are γ × 100 percent

sure that the interval (α, β) contains θo. Here, γ is the confidence coefficient, and (α, β)

is the associated confidence interval for θo. It is easily seen that the larger the value of γ,
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the wider is the associated confidence interval. Note that for a given confidence coefficient,

there may exist different confidence intervals satisfying the same probability statement. It

is then desirable to find the smallest possible confidence interval.

Let A1 denote the event that a confidence interval contains θ1 and A2 the event that

a confidence interval contains θ2. The intersection A = A1 ∩ A2 is thus the event that

a confidence “box” covers both parameters. When A1 and A2 are independent such that

IP(A1) = IP(A2) = γ, we have IP(A) = γ2. When these two events are not independent

(e.g., the parameter estimators of θ1 and θ2 are correlated), it becomes difficult to determine

IP(A). As such, finding a proper confidence “box” based on individual confidence intervals

is by no means an easy job. On the other hand, if a function q(θ̂1, θ̂2, θ1, θ2) with a known

distribution is available, we can, for a given γ, find the values a and b such that

IP{a < q(θ̂1, θ̂2, θ1, θ2) < b} = γ.

By solving the inequality above for θ1 and θ2 we may obtain a confidence region in which

the point (θ1, θ2) lies with probability γ.

2.6 Hypothesis Testing

2.6.1 Basic Concepts

Given a sample of data, it is often desirable to check if certain characteristics of the un-

derlying random mechanism (population) are supported by these data. For this purpose,

a hypothesis of these characteristics must be specified, and a test is constructed so as to

generate a rule of rejecting or accepting (not rejecting) the postulated hypothesis.

The hypothesis being tested is called the null hypothesis, denoted as H0; the other states

or values of the characteristics of interest form an alternative hypothesis, denoted as H1.

Hypotheses are usually formulated in terms of the parameters of models. For example, one

may specify that H0 : θo = a for some a and H1 : θo 6= a. Here, H0 is a simple hypothesis in

the sense that the parameter vector being tested takes a single value, but H1 is a composite

hypothesis in that the parameter vector may take more than one values. Given a sample of

random variables z1, . . . ,zT , a test statistic is a function of these random variables, denoted

as T (z1, . . . ,zT ). The critical region C of T (z1, . . . ,zT ) is the range of its possible values

that lead to rejection of the null hypothesis. In what follows, the set

Γ = {ζ1, . . . , ζT : T (ζ1, . . . , ζT ) ∈ C}

will also be referred to as the critical region of T . The complement of the critical region,

Cc, is the region containing the values of T (z1, . . . ,zT ) that lead to acceptance of the null
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hypothesis. We can also define

Γc = {ζ1, . . . , ζT : T (ζ1, . . . , ζT ) ∈ Cc}

as the acceptance region of T .

A test may yield incorrect inferences. A test is said to commit the type I error if it

rejects the null hypothesis when the null hypothesis is in fact true; a test is said to commit

the type II error if it accepts the null hypothesis when the alternative hypothesis is true.

Suppose that we are interested in testing H0 : θo = a against H1 : θo = b. Let IP0 be the

probability asociated with θo = a and IP1 the probability with θo = b. The probability of

the type I error is then

α = IP0{(z1, . . . ,zT ) ∈ Γ} =

∫
Γ
f0(ζ1, . . . , ζT ;a) dζ1 · · · dζT ,

where f0(z1, . . . ,zT ;a) is the joint density with the parameter θo = a. The value α is also

known as the size or significance level of the test. The probability of the type II error is

β = IP1{(z1, . . . ,zT ) ∈ Γc} =

∫
Γc

f1(ζ1, . . . , ζT ; b) dζ1 · · · dζT ,

where f1(z1, . . . ,zT ; b) is the joint density with the parameter θo = b. Clearly, α decreases

when the critical region Γ is smaller; in the mean time, β increases due to a larger Γc. Thus,

there is usually a trade-off between these two error probabilities.

Note, however, that the probability of the type II error cannot be defined as above when

the alternative hypothesis is composite: θo ∈ Θ1, where Θ1 is a set of parameter values

in the parameter space. Consider now the probability 1 − IP1(Γc) = IP1(Γ), which is the

probability of rejecting the null hypothesis when H1 is true. Thus, both IP0(Γ) and IP1(Γ)

are the probabilities of rejecting the null hypothesis under two different parameter values.

More generally, define the power function of the test as

π(θo) = IPθo{(z1, . . . ,zT ) ∈ Γ},

where θo varies in the parameter space. In particular, π(a) = α. For θo ∈ Θ1, π(θo)

describes the ability of a test that can correctly detect the falsity of the null hypothesis;

these probabilities are also referred to as the powers of the test. The probability of the type

II error under the composite alternative hypothesis θo ∈ Θ1 can now be defined as

β = max
θo∈Θ1

[1− π(θo)].
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2.6.2 Construction of Tests

Given the null hypothesis θo = a, the test statistic T (z1, . . . ,zT ) is usually based on

the comparison of an estimator of θo and the hypothesized value a. This statistic must

have a known distribution under the null hypothesis, which will be referred to as the null

distribution.

Given the statistic T (z1, . . . ,zT ), the probability IP0{T (z1, . . . ,zT ) ∈ C} can be deter-

mined by the null distribution of T . If this probability is small, the event that T (z1, . . . ,zT ) ∈
C would be considered “unlikely” or “improbable” under the null hypothesis, while the event

that T (z1, . . . ,zT ) ∈ Cc would be considered “likely” or “probable.” When the former,

unlikely event occurs (i.e., for data z1 = ζ1, . . . ,zT = ζT , T (ζ1, . . . , ζT ) falls in C), it

constitutes an evidence against the null hypothesis, so that the null hypothesis is rejected;

otherwise, we accept (do not reject) the null hypothesis. We have seen that there is a

trade-off between the error probabilities α and β. To construct a test, we may fix one of

these two error probabilities at a small level. It is typical to specify a small significance

level α and determine the associated critical region C by

α = IP0{T (z1, . . . ,zT ) ∈ C}.

As such, we shall write the critical region for the significance level α as Cα. This approach

ensures that, even though the decision of rejection might be wrong, the probability of

making the type I error is no greater than α. A test statistic is said to be significant if it

is in the critical region; otherwise, it is insignificant.

Another approach is to reject the null hypothesis if

IP0{v : v > T (ζ1, . . . , ζT )}

is small. This probability is the tail probability of the null distribution and also known

as the p-value of the statistic T . Although this approach does not require specifying the

critical region, it is virtually the same as the previous approach.

The rationale of our test decision is that the null hypothesis is rejected because the test

statistic takes an unlikely value. It is then natural to expect that the calculated statistic is

relatively more likely under the alternative hypothesis. Given the null hypothesis θo = a

and alternative hypothesis θo ∈ Θ1, we would like to have a test such that

π(a) ≤ π(θo), θo ∈ Θ1.

A test is said to be unbiased if its size is no greater than the powers under the alternative

hypothesis. Moreover, we would like to have a test that can detect the falsity of the null
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hypothesis with probability approaching one when there is sufficient information. That is,

for every θo ∈ Θ1,

π(θo) = IPθo{T (z1, . . . ,zT ) ∈ C} → 1,

as T →∞. A test is said to be consistent if its power approaches one when the sample size

becomes infinitely large.

Example 2.11 Given the sample of i.i.d. normal random variables z1, . . . , zT with mean

µo and variance one. We would like to test the null hypothesis µo = 0. A natural estimator

for µo is the sample average z̄ = T−1
∑T

t=1 zt. It is well known that

√
T (z̄ − µo) ∼ N (0, 1).

Hence,
√
T z̄ ∼ N (0, 1) under the null hypothesis; that is, the null distribution of the

statistic
√
T z̄ is the standard normal distribution. Given the significance level α, we can

determine the critical region Cα using

α = IP0(
√
T z̄ ∈ Cα).

Let Φ denote the distribution function of the standard normal random variable. For α =

0.05, we know

0.05 = IP0(
√
T z̄ > 1.645) = 1− Φ(1.645).

The critical region is then (1.645,∞); the null hypothesis is rejected if the calculated statistic

falls in this interval. When the null hypothesis is false, the distribution of
√
T z̄ is no longer

N (0, 1) but N (µo, 1) for some non-zero µo. Suppose that µo > 0. Then,

IP1(
√
T z̄ > 1.645) = IP1(

√
T (z̄ − µo) > 1.645−

√
Tµo).

Since
√
T (z̄ − µo) ∼ N (0, 1) under the alternative hypothesis, we have the power:

IP1(
√
T z̄ > 1.645) = 1− Φ(1.645−

√
Tµo).

Given that µo > 0, this probability must be greater than the test size (0.05), so that the

test is unbiased. On the other hand, when T increases, 1.645 −
√
Tµo becomes smaller

so that Φ(1.645 −
√
Tµo) decreases. Thus, the test power improves when T increases. In

particular, as T tends to infinity, the power of this test approaches one, showing that
√
T z̄

is a consistent test. 2
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