1. (LLN) Generate a random sample from an $\operatorname{AR}(1)$ model:

$$
x_{t}=\rho^{*} x_{t-1}+\varepsilon_{t-1}, \varepsilon_{t} \sim N\left(0, \sigma_{\varepsilon}^{2}\right), \mathrm{t}=1, \ldots, \mathrm{~T}
$$

and compute its sample average based on the following designs.
i. Given $\sigma_{\varepsilon}=1$, change the $\operatorname{AR}(1)$ coefficient $\rho=0.2,0.5,0.8,0.99$
ii. Given $\rho=0.2$, change σ_{ε} to $\sigma_{\varepsilon}=1,2,3,4$

For each case, consider the sample sizes $\mathrm{T}=50,100,300$, and 1000 , and the number of replications is 1000. Plot the resulting histograms for each case. Explain your results in detail.

Hint: Do not restrict x range between -1 and 1 and try different breaks number. You may observe the difference in the figure.
EX : hist(fun_LLN(50,1000), breaks $=\mathbf{2 0}$, freq=FALSE,main='T=50', xlab='Sample Mean')
2. (CLT) Generate random samples with sample sizes $T=50,100,300$, and 1000 from the following distributions and compute the normalized sample average for each sample:

$$
\frac{\sqrt{T}(\overline{\mathrm{x}}-\mu)}{\sigma}
$$

where $\overline{\mathrm{x}}, \mu$, and σ are the sample average, mean, and standard deviation, respectively. Repeat this procedure 1000 times and plot the resulting histograms. Explain if your results obey the central limit theorem.
(1) Student t (5) with zero mean
(2) Student t (2); for this case, replace σ with its sample counterpart.

