NATIONAL TAIWAN UNIVERSITY

Department of Finance: Econometric Theory I — Final

Department of Economics: Econometric Theory III — Final

Fall 2011

Professor C.-M. Kuan

- 1. (6 points) Comment the following statement and explain clearly. "Suppose that y_t are generated according to $y_t = \mathbf{x}'_t \boldsymbol{\beta}_o + \varepsilon_t$, with $\mathbf{V}_o = \lim_{T \to \infty} \operatorname{var}(T^{-1/2} \sum_{t=1}^T \mathbf{x}_t \varepsilon_t)$. The diagonal elements of the Eicker-White estimator ought to be smaller than the corresponding diagonal elements of the Newey-West estimator, because the former does not include estimates of the autocovariances of $\mathbf{x}_t \varepsilon_t$ but the latter does. As a result, the *t*-ratio of each coefficient is more likely to reject the null hypothesis if it employs the Eicker-White standard error."
- 2. (22 points) Suppose you have decided to estimate an AR(1) specification, $y_t = \alpha y_{t-1} + e_t$, using the OLS method.
 - (a) What is the probability limit of the OLS estimator $\hat{\alpha}_T$, when y_t are generated according to an MA(1) process: $y_t = u_t \pi_1 u_{t-1}$, where u_t is a white noise with mean zero and variance σ_u^2 ?
 - (b) How would you estimate the standard error of $\sqrt{T}(\hat{\alpha}_T \alpha^*)$, where α^* is the probability limit of $\hat{\alpha}_T$? All notations in your estimate must be clearly defined.
- 3. (20 points) Let y_t be a binary variable taking values zero and one and \boldsymbol{x}_t a vector of regressors. Suppose you approximate $\mathbb{P}(y_t|\boldsymbol{x}_t)$ by

$$F(\boldsymbol{x}_t; \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{x}_t' \boldsymbol{\theta})}{1 + \exp(\boldsymbol{x}_t' \boldsymbol{\theta})}$$

To estimate θ , one may employ the NLS estimator, the weighted NLS estimator with the conditional variance of y_t as the weight, and the QMLE estimator. Write down the objective functions for these 3 estimators and explain their differences. Which one of these estimators is the most efficient and why?

- 4. (24 points) Answer the following questions with "TRUE" or "FALSE" and explain why. For (a) and (b), an example or a counter example suffices.
 - (a) A biased estimator may be consistent.
 - (b) To test a linear hypothesis under the framework of QMLE, the Wald statistic is greater than the LM statistic.
 - (c) To estimate an asymptotic covariance matrix, the Newey-West estimator is consistent even when the data are serially independent.

- (d) The quadratic spectral kernel function may be negative; as such, the Newey-West estimator based on this kernel may not be positive semi-definite.
- 5. (10 points) Suppose you believe y_t are generated according to $y_t = x'_t \beta_o + \varepsilon_t$ and would like to test if there is ARCH(1) effect. Describe how the Breusch-Pagan test can be applied in this case. Be specific about the test procedure and its limiting distribution. All notations must be clearly defined.
- 6. (18 points) Suppose you are given randomly sampled household data and would like to study the binary variable y_t using the probit specification $F(\boldsymbol{x}'_t\boldsymbol{\theta})$. Note that by random sampling we mean the data are independent across households.
 - (a) Write down a consistent estimate of the asymptotic covariance matrix of the QMLE $\tilde{\boldsymbol{\theta}}_T$. Be specific about the expected Hessian matrix and information matrix.
 - (b) Describe clearly how you can test the null hypothesis $\theta_2 + \theta_3 = 1$, where θ_i is the *i*-th element of θ . Be specific about your test statistic and its limiting distribution.
- 7. Bonus (20 points) Suppose $y_t = \sqrt{h_t} u_t$, where u_t are i.i.d. with mean zero and variance one, and h_t are such that

$$h_t = \begin{cases} \alpha_0 + \beta y_{t-1}^2, & t = 2, \dots, s, \\ \alpha_1 + \beta y_{t-1}^2, & t = s+1, \dots, T, \end{cases}$$

where $\alpha_0, \alpha_1 > 0, \beta \ge 0$, and the change point s is known.

- (a) Write down a quasi-log-likelihood function and explain how to compute the QMLE of unknown parameters.
- (b) Explain clearly how to test the null hypothesis: $\alpha_0 = \alpha_1$. Be specific about your test statistic and the limiting distribution.

Note: You will NOT receive bonus points unless you have finished answering all other questions.

Happy New Year and See You Next Year!