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Nonlinear Specifications

Given the dependent variable y, consider the nonlinear specification:
y = f(x;8) + e(B),

where x is £ x 1, B is k x 1, and f is a given function. There are many
choices of f. A flexible model is to transform one (or several) x by the
Box-Cox transform of x:

x7 -1

’y )

which yields x — 1 when v =1, 1 — 1/x when v = —1, and a value close

to In x when v — 0.
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@ The CES (constant elasticity of substitution) production function:
— -y _ - =X/
y=a[6L™7+(1-86)K] ,
where a > 0, 0 < 6 < 1 and v > —1, which yields:
A _ _
Iny=Ina—=In[6L™7 4+ (1 - 8)K].
Y
@ The translog (transcendental logarithmic) production function:

Iny = B1+065 In L+ 55 In K+5,(In L)(In K)+F5(In L)2+ﬁ6(|n K)27

which is linear in parameters; in this case, the OLS method suffices.
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Nonlinear Time Series Models

@ An exponential autoregressive (EXPAR) model:

p

Y = Z [Oéj + 5; exp(—’yyf_l)]yt_j + &
=1

@ A self-exciting threshold autoregressive (SETAR) model:

v, = aO+alyt—l+”'+apyt—p+eta ifyt—de (—OO,C],
t .
b0+b1yt71+”'+bpytfp+et7 if Yi—d € (6700)7

where 1 < d < p is the delay parameter, and c is the threshold

parameter. Alternatively,

p p
Ye=a0t ) aye i+ (50 +2 51%—1) Ly g>e) Ten
= j=1
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@ Replacing the indicator function in SETAR model with a “smooth”
function h we obtain the smooth threshold autoregressive (STAR)
model:

p

p
Ye=3ap + Z aYe—jt (50 + Z@'Yﬁj) h(yi—qi €, 0) + &,
= =1

where h is a distribution function, e.g.,

1
1+ exp[—(ye_g — ©)/s]’

h(y;_qic,0) =

with ¢ the threshold value and s a scale parameter. The STAR model
admits smooth transition between different regimes, and it behaves

like a SETAR model when (y,_, — c)/s is large.
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Artificial Neural Networks

A 3-layer neural network can be expressed as

q p
fxq.....x8) =g 040‘1‘204;’7(%04‘270"9) ;
i=1 j=1

which contains p input units, g hidden units, and one output unit. The
functions h and g are known as activation functions, and the parameters

in these functions are connection weights.

@ his typically an S-shaped function; two leading choices are the logistic
function h(x) = 1/(1 4 ™) and the hyperbolic tangent function

X X

et —e

eX 4 ex’

@ The function g may be the identity function or the same as h.
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Artificial neural networks are designed to mimic the behavior of biological

neural systems and have the following properties.

@ Universal approximation: Neural network is capable of approximating
any Borel-measurable function to any degree of accuracy, provided
that g is sufficiently large. In this sense, neural networks can be
understood as a series expansion, with hidden units functions as the

basis functions.

@ Parsimonious model: To achieve a given degree of approximation
accuracy, neural networks are simpler than the polynomial and
trigonometric expansions, in the sense that the number of hidden

units g can grow at a much slower rate.
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The NLS Estimator

@ The NLS criterion function:

Qr(B) = by~ f6a, - xr BNy — s . xr: B)]

1 T
= 7> b~ Fxa B
t=1

@ The first order condition contains k nonlinear equations with k

unknowns:
2 set
VeQr(8) = —7V5f(x1, coxm By —f(xq, .. x7 B)] =0,
where Vgf(xy,...,x7;8) is a k X T matrix. A solution to the first

order condition is the NLS estimator 3.
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[ID-2] f(x;-) is twice continuously differentiable in the second argument
on ©4, such that for given data (y;,x,), t=1,..., T, V%QT(BT) is
positive definite.

o While [ID-2] ensures that 3 is a minimum of Q(83), it does not
guarantee the uniqueness of this solution. For a given data set, there
may exist multiple, local minima of Q+(3).

o For linear regressions, f(8) = X3 so that Vf(8) = X and
V3f(8) = 0. It follows that V3Q+(8) = 2(X'X)/T, which is
positive definite if, and only if, X has full column rank. Note that in

linear regression, the identification condition does not depend on 3.
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Nonlinear Optimization Algorithms

An NLS estimate is usually computed using a numerical method. In
particular, an iterative algorithm starts from some initial value of the
parameter and then repeatedly calculates next available value according to

a particular rule until an optimum is reached approximately.

A generic, iterative algorithm is
BU+D = gi) 4 (g,

That is, the (i 4 1) th iterated value BU*+Y) is obtained from B() with an
adjustment term s(d) where d(/) characterizes the direction of change
in the parameter space and s(!) controls the amount of change. Note that

an iterative algorithm can only locate a local optimum.
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Gradient Method

The first-order Taylor expansion of Q(3) about 3 is
Qr(8) = Qr(B") + [VaQr(8NI'(8 - 8").

Replacing 3 with B8U+1) and BT with 81,
Qr(8YY) ~ @r(8Y) + [VaQr(87)]'sd.

Setting d') = —g(), where g() is Vg Qr(8) evaluated at B, we have
Qr (5("+1)) ~ QT(,@(i)) _ 50 [g(i)'g(i)]’

where g()g() > 0. This leads to:

Bl = gi) _ s(gli),
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Steepest Descent Algorithm

To maximize the step length, note that

0Qr (BUTY)
ds()

Let H) = V%QT(,B)\BZIB(;). By Taylor's expansion of g, we have
gl ~ gl 4 HO(BU+Y) _ g()) — g() _ H(D5(Dg (),

, (i+1)
— V,BQT(B('H)) 98" —

i _glitrg) — g,
S 1

Thus, 0 = gl +D/gl) ~ g(Vg() — s(Ng(VH g or equivalently,

(gl
e ">y

s)=_S5 "8
gHOg) ~

when H() is p.d. We obtain the steepest descent algorithm:

g (gl
87" | o
()]g ‘

(i+1) (i) _
B =80 — | g
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Newton Method

The Newton method takes into account the second order derivatives.

Consider the second-order Taylor expansion of Q(3) around some 3
Qr(8) ~ Qr(8") + (8~ B") + 58— BIYHI(8 - 8").

The first order condition of Q1(3) is g' + H'(8 — B87) ~ 0, so that
B~ B —(H) gl

This suggests the following Newton-Raphson algorithm:
Bli+ = gi) _ (H(i))_lg(i)’

with the step length 1 and the direction vector —(H(")
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From Taylor's expansion it is easy to see that

. . 1 /. Ny .
QT(ﬂ('H)) - QT(I@(I)) ~T5 g(’)’(H(’)) lg(’) <0,

provided that H) is p.s.d. Thus, the Newton-Raphson algorithm usually

results in a decrease of Q.

When Q7 is (locally) quadratic, the second-order expansion is exact, so
that 8 = B — (H")~'g’ must be a minimum of Q+(3). This immediately
suggests that the Newton-Raphson algorithm can reach the minimum in a
single step. Yet, there are two drawbacks.

@ The Hessian matrix need not be positive definite.

@ The Hessian matrix must be inverted at each iteration step.
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Gauss-Newton Algorithm

Letting =(8) = Vgf(3) we have

H(B)Z—*ng(ﬁ)[y—f(ﬂ)]Jr "(ﬂ)’"( B),

Ignoring the first term, an approximation to H(3) is 2=(8)'=(8)/T,
which requires only the first order derivatives and is guaranteed to be
p.s.d. The Gauss-Newton algorithm utilizes this approximation as

pUtD = g0 4 [2(80)'=(8V)] =(87) [y - £(87)].

Note that the adjustment term can be obtained as the OLS estimate of
regressing y — f(,B(i)) on E(,B(i)); this is known as the Gauss-Newton

regression.
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Other Modifications

To maintain a correct search direction, H) needs to be p.d.

@ Correcting H() by: H(Ci) = H 4+ 1, where ¢() > 0 is chosen to
“force” H(C') to be p.d.

e For H=H™!, one may compute I:l(ci) = |:|(i) + cl. Such a correction

is used in the Marquardt-Levenberg algorithm.

@ The quasi-Newton method corrects l:l(i) by a symmetric matrix:
iy — g® L.

This is used by the Davidon-Fletcher-Powell (DFP) algorithm and the
Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
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Initial Values and Convergence Criteria

@ Initial values: Specified by the researcher or obtained using a random
number generator. Prior information, if available, should also be
taken into account.

o Convergence criteria:

° Hﬂ““m - ﬁ(i)|| < ¢, where || - || denotes the Euclidean norm,

o [lg(B)[| < c. or

o |Qr(B) — @r(BV)] < c.
For the Gauss-Newton algorithm, one may stop the algorithm when
TR? is “close” to zero, where R? is the coefficient of determination of

the Gauss-Newton regression.
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Digression: Uniform Law of Large Numbers

Consider the function q(z,(w); #). It is a r.v. for a given 6 and a function
of 6 for a given w. Suppose {q(z,;0)} obeys a SLLN for each # € ©:

q(z(w): 0) == Q(0),

||M~4

where Q(0) is non-stochastic. Note that Q§(0) = {w: Qr(w;0) /A~ Q(6)}
varies with 6.

o Although IP(Q2§(0)) = 0, Upce2§(#) is an uncountable union of
non-convergence sets and may not have probability zero.

® Myeof2(f) may occur with probability less than one.
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When 6 also depends on T (e.g., when @ is replaced by an estimator GNT)
there may not exist a finite T* such that Q1 (w; f7) are arbitrarily close to
Q(w; A7) for all T > T*. Thus, we need a notion of convergence that is
uniform on the parameter space ©.

We say that Q1 (w; ) converges to Q(#) uniformly in 6 almost surely (in
probability) if

sup |Q(0) — Q(9)] — 0, a.s. (in probability).
0e©

We also say that q(z,(w); 0) obey a strong (or weak) uniform law of large
numbers (SULLN or WULLN).
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Example: Let z, be i.i.d. with zero mean and

Té, 0<6< 55,
gr(z:(w);0) = z(w)+ ¢ 1T, <0<+,
07 % <0<OO

Observe that for # > 1/T and 6 =0

T

\'

Z (2 0) Zztgo

t:l
by Kolmogorov's SLLN. For a given 6, we can choose T large enough such
. a.s

that Q7(w;0) = 0, where 0 is the pointwise limit. Yet for © = [0, c0)

sup |Qr(wi6)] = 27 + 1/2] 251/2,
fco

so that the uniform limit is different from the pointwise limit
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What is the extra condition needed to ensure SULLN if we already have,
for each 6 € ©,

]
Qr(0) = = Y lari(z::0) — Elar(z: 0))] “ 0.
t=1

Suppose Q1(0) satisfies a Lipschitz-type condition: for 8 and 6 in ©,
Q7(6) — Qr(6") < Cr|6 - 6| as.,
where |C7| < A a.s. and A does not depend on 6. Then,

sup |Qr(8)] < sup |Q7(6) — Qr(6")| + |Q7(67)].
6cO 6cO
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Given € > 0, we can choose 0 such that ||@ — 87|| < ¢/(2A). Then,
€

_ T
Zgg 1Qr(0) — Qr(6") < Ct A <

i

N o

uniformly in T. Also, by pointwise convergence of Qr, |Q+(8")| < ¢/2 for
large T. Consequently, for all T sufficiently large,

sup |Qr(0)] <e.
6co

This shows that pointwise convergence and a Lipschitz condition on Q¢
together suffice for a SULLN or WULLN.
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The NLS criterion function is Q(8) = T~} Zt e — f(x¢: B))% and its
minimizer is the NLS estimator 37 Suppose [E[Q+(B)] is continuous on
©; such that 3, is its unique, global minimum. If Q+(8) is close to
E[Q+(8)], we would expect 31 close to B,.

To see this, assuming that Q+ obeys a SULLN:

sup |Qr(8) — E[Q+(8)]| — O,

BEO,

for all w € Q4 and IP(,) = 1. Set

e= _inf  (E[Qr(8)] - E[QT(B,)]),

BeEBNO;

for an open neighborhood B of 3,.
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For w € Qq, we have for large T, E[Q+(87)] — Q+(87) < 5, and
Qr(Br) — E[Qr(B.)] < @r(8,) — ElQr(B,)] < 5.

because the NLS estimator 31 minimizes Q(3). It follows that

E[Qr(B7)] — E[Q7(B,)]
< E[Qr(B7)] — Qr(B7) + Qr(Br) — E[Q1(8,)] < ¢,
for all T sufficiently large. As @7 is such that IE[Q1(871)] is closer to

IE[Q+(8,)] with probability one, it can not be outside the neighborhood B
of B,. As B is arbitrary, ,@T must be converging to 3, almost surely.
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Q: How do we ensure a SULLN or WULLN?
If ©; is compact and convex, we have from the mean-value theorem and
the Cauchy-Schwartz inequality that

Q7 (B) — Qr(BN < IVgQr (BB - Bl as.,

where 3% is the mean value of 3 and 3', in the sense that
1B — 8| < |8* — BT|. Hence, the Lipschitz-type condition would hold for

Cr = sup VgQr(8),
B€o,

with V5Q7(8) = -2 Zt 1 Vaf(xe; B)y: — f(x: 8)]/ T. Note that
VgQ@7(8) may be bounded in probability, but it may not be bounded in

an almost sure sense. (Why?)
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We impose the following conditions.

[C1] {(y, w})'} is a sequence of random vectors, and x, is vector
containing some elements of Yt~1 and W!.

(i) The sequences {y2}, {y:f(x¢;3)} and {f(x:; 3)?} all obey a WLLN for
each B in ©1, where ©1 is compact and convex.

(i) yt, f(x¢; B) and Vgf(xs; 3) all have bounded second moment
uniformly in 3.

[C2] There exists a unique parameter vector 3, such that
E(ye | VHWE) = (%41 8,)-

Theorem 8.1

Given the nonlinear specification: y = f(x; 3) + e(3), suppose that [C1]
and [C2] hold. Then, B — ..
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Remark: Theorem 8.1 is not satisfactory because it only deals with the
convergence to the global minimum. Yet, an iterative algorithm is not
guaranteed to find a global minimum of the NLS objective function.
Hence, it is more reasonable to expect the NLS estimator converging to
some local minimum of E[Q+(3)]. Therefore, we shall, in what follows,
assert only that the NLS estimator converges in probability to a local
minimum 3" of IE[Q7(3)]. In this case, f(x; 3") is, at most, an
approximation to the conditional mean function.
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Asymptotic Normality

By the mean-value expansion of VﬁQT(,@T) about 3%,
0=VsQr(Br) = V5Qr(8") + V3Qr (81 (B — 8°),

where BTT is a mean value of 31 and B*. Thus, when V%QT(,@TT) is
invertible, we have

VT(Br—pB) = —[V%QT(ﬁtr)]flﬁvﬁQT(ﬁ*)
= _HT(:@*)_lﬁvﬁQT(:@*) + op(1),

where Hy(8) = E[V4Qr(8)]. That is, VT(B81 — 8*) and
—HT(ﬂ*)_lﬁVﬁQT(B*) are asymptotically equivalent.
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Under suitable conditions,
\FvﬁQT = Z V,@ Xe; B7) e — f(x4: B7)]

obeys a CLT, i.e., (V“})‘lpﬁvﬁQT(,@*) D, N(0, 1), where

Vi = var (% il Vot (xe B)lye — F(xe ﬂ*)]) -
Then for DY = Hr(8°)'ViH(8") 7,

(D7) 2H (B VTV 3Qr(87) = N(0, 1y).
By asymptotic equivalence,

(D5) VA T(Br — B7) 2 N(O, 1)
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When D7 is replaced by a consistent estimator |5T,
A_1/2 2 * D
Dy VT (Br — ") — N(0,1,).

Note that

E([Vaf(x:: 8] [Vaf(x:: B )],)

||M~|

;
—~ %Z E(V3f(xe: 8%) [ve — f(x:: 8%)]),
t=1

which can be consistently estimated by its sample counterpart:
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When €, = y, — f(x,; 8%) are uncorrelated with Véf(xt;ﬂ*), H(8%)
depends only on the expectation of the outer product of Vﬂf(xt; B*) so
that ﬁT may be simplified as

i
Ay = 2 3 [9f(ci B7)] [Vaf (i )]
t=1

This is analogous to estimating M by 327, x,x,/ T in linear regressions.

If {€,} is not a martingale difference sequence with respect to Y*~! and
W!, V% can be consistently estimated using a Newey-West type
estimator. This is more likely in practice as the NLS estimator typically

converges to a local optimum G*.
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Wald Tests

@ Hypothesis: R3* =r, where R is a g x k selection matrix and r is a

g x 1 vector of pre-specified constants.

@ By the asymptotic normality result, we have under the null that
~—1/2 A ~—1/2 A
P VTR(Br - 57) =T PVT(RB, — 1) -2 N(0,1,),

where [+ = RD;R’, and D is a consistent estimator for D¥-.

@ The Wald statistic is
A =1 _ - D
Wr=T(RBr —r)I (RBr — r)’ - Xz(q)~

@ For nonlinear restrictions r(3*) = 0, the Wald test is not invariant
with respect to the form of r(3) = 0.
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