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Nonlinear Specifications

Given the dependent variable y , consider the nonlinear specification:

y = f (x;β) + e(β),

where x is `× 1, β is k × 1, and f is a given function. There are many

choices of f . A flexible model is to transform one (or several) x by the

Box-Cox transform of x :

xγ − 1

γ
,

which yields x − 1 when γ = 1, 1− 1/x when γ = −1, and a value close

to ln x when γ → 0.
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The CES (constant elasticity of substitution) production function:

y = α
[
δL−γ + (1− δ)K−γ

]−λ/γ
,

where α > 0, 0 < δ < 1 and γ ≥ −1, which yields:

ln y = ln α− λ

γ
ln
[
δL−γ + (1− δ)K−γ

]
.

The translog (transcendental logarithmic) production function:

ln y = β1+β2 ln L+β3 lnK+β4(ln L)(lnK )+β5(ln L)2+β6(lnK )2,

which is linear in parameters; in this case, the OLS method suffices.
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Nonlinear Time Series Models

An exponential autoregressive (EXPAR) model:

yt =

p∑
j=1

[
αj + βj exp

(
−γy2

t−1

)]
yt−j + et .

A self-exciting threshold autoregressive (SETAR) model:

yt =

{
a0 + a1yt−1 + · · ·+ apyt−p + et , if yt−d ∈ (−∞, c],

b0 + b1yt−1 + · · ·+ bpyt−p + et , if yt−d ∈ (c ,∞),

where 1 ≤ d ≤ p is the delay parameter, and c is the threshold

parameter. Alternatively,

yt = a0 +

p∑
j=1

ajyt−j +
(
δ0 +

p∑
j=1

δjyt−j

)
1{yt−d>c} + et ,

with aj + δj = bj .
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Replacing the indicator function in SETAR model with a “smooth”

function h we obtain the smooth threshold autoregressive (STAR)

model:

yt = a0 +

p∑
j=1

ajyt−j +
(
δ0 +

p∑
j=1

δjyt−j

)
h(yt−d ; c , δ) + et ,

where h is a distribution function, e.g.,

h(yt−d ; c , δ) =
1

1 + exp[−(yt−d − c)/s]
,

with c the threshold value and s a scale parameter. The STAR model

admits smooth transition between different regimes, and it behaves

like a SETAR model when (yt−d − c)/s is large.
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Artificial Neural Networks

A 3-layer neural network can be expressed as

f (x1. . . . , xp;β) = g

α0 +

q∑
i=1

αi h
(
γi0 +

p∑
j=1

γijxj

) ,

which contains p input units, q hidden units, and one output unit. The

functions h and g are known as activation functions, and the parameters

in these functions are connection weights.

h is typically an S-shaped function; two leading choices are the logistic

function h(x) = 1/(1 + e−x) and the hyperbolic tangent function

h(x) =
ex − e−x

ex + e−x
.

The function g may be the identity function or the same as h.
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Artificial neural networks are designed to mimic the behavior of biological

neural systems and have the following properties.

Universal approximation: Neural network is capable of approximating

any Borel-measurable function to any degree of accuracy, provided

that q is sufficiently large. In this sense, neural networks can be

understood as a series expansion, with hidden units functions as the

basis functions.

Parsimonious model: To achieve a given degree of approximation

accuracy, neural networks are simpler than the polynomial and

trigonometric expansions, in the sense that the number of hidden

units q can grow at a much slower rate.
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The NLS Estimator

The NLS criterion function:

QT (β) =
1

T
[y − f(x1, . . . , xT ;β)]′[y − f(x1, . . . , xT ;β)]

=
1

T

T∑
t=1

[yt − f (xt ;β)]2.

The first order condition contains k nonlinear equations with k

unknowns:

∇βQT (β) = − 2

T
∇βf(x1, . . . , xT ;β) [y − f(x1, . . . , xT ;β)]

set
= 0,

where ∇βf(x1, . . . , xT ;β) is a k × T matrix. A solution to the first

order condition is the NLS estimator β̂T .
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[ID-2] f (x; ·) is twice continuously differentiable in the second argument

on Θ1, such that for given data (yt , xt), t = 1, . . . ,T , ∇2
βQT (β̂T ) is

positive definite.

While [ID-2] ensures that β̂T is a minimum of QT (β), it does not

guarantee the uniqueness of this solution. For a given data set, there

may exist multiple, local minima of QT (β).

For linear regressions, f(β) = Xβ so that ∇βf(β) = X′ and

∇2
βf(β) = 0. It follows that ∇2

βQT (β) = 2(X′X)/T , which is

positive definite if, and only if, X has full column rank. Note that in

linear regression, the identification condition does not depend on β.

C.-M. Kuan (National Taiwan Univ.) Nonlinear Least Squares Theory March 9, 2010 10 / 33



Nonlinear Optimization Algorithms

An NLS estimate is usually computed using a numerical method. In

particular, an iterative algorithm starts from some initial value of the

parameter and then repeatedly calculates next available value according to

a particular rule until an optimum is reached approximately.

A generic, iterative algorithm is

β(i+1) = β(i) + s(i)d(i).

That is, the (i + 1) th iterated value β(i+1) is obtained from β(i) with an

adjustment term s(i)d(i), where d(i) characterizes the direction of change

in the parameter space and s(i) controls the amount of change. Note that

an iterative algorithm can only locate a local optimum.
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Gradient Method

The first-order Taylor expansion of Q(β) about β† is

QT (β) ≈ QT (β†) + [∇βQT (β†)]′(β − β†).

Replacing β with β(i+1) and β† with β(i),

QT

(
β(i+1)

)
≈ QT

(
β(i)

)
+
[
∇βQT

(
β(i)

)]′
s(i)d(i).

Setting d(i) = −g(i), where g(i) is ∇βQT (β) evaluated at β(i), we have

QT

(
β(i+1)

)
≈ QT

(
β(i)

)
− s(i)

[
g(i)′g(i)

]
,

where g(i)′)g(i) ≥ 0. This leads to:

β(i+1) = β(i) − s(i)g(i).
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Steepest Descent Algorithm

To maximize the step length, note that

∂QT

(
β(i+1)

)
∂s(i)

= ∇βQT

(
β(i+1)

) ∂β(i+1)

∂s(i)
= −g(i+1)′g(i) = 0.

Let H(i) = ∇2
βQT (β)|β=β(i) . By Taylor’s expansion of g , we have

g(i+1) ≈ g(i) + H(i)
(
β(i+1) − β(i)

)
= g(i) −H(i)s(i)g(i).

Thus, 0 = g(i+1)′g(i) ≈ g(i)′g(i) − s(i)g(i)′H(i)g(i), or equivalently,

s(i) =
g(i)′g(i)

g(i)′H(i)g(i)
≥ 0,

when H(i) is p.d. We obtain the steepest descent algorithm:

β(i+1) = β(i) −

[
g(i)′g(i)

g(i)′H(i)g(i)

]
g(i).
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Newton Method

The Newton method takes into account the second order derivatives.

Consider the second-order Taylor expansion of Q(β) around some β†:

QT (β) ≈ QT (β†) + g†′(β − β†) +
1

2
(β − β†)′H†(β − β†).

The first order condition of QT (β) is g† + H†(β − β†) ≈ 0, so that

β ≈ β† − (H†)−1g†.

This suggests the following Newton-Raphson algorithm:

β(i+1) = β(i) −
(
H(i)

)−1
g(i),

with the step length 1 and the direction vector −
(
H(i)

)−1
g(i).
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From Taylor’s expansion it is easy to see that

QT

(
β(i+1)

)
− QT

(
β(i)

)
≈ −1

2
g(i)′(H(i)

)−1
g(i) ≤ 0,

provided that H(i) is p.s.d. Thus, the Newton-Raphson algorithm usually

results in a decrease of QT .

When QT is (locally) quadratic, the second-order expansion is exact, so

that β = β† − (H†)−1g† must be a minimum of QT (β). This immediately

suggests that the Newton-Raphson algorithm can reach the minimum in a

single step. Yet, there are two drawbacks.

The Hessian matrix need not be positive definite.

The Hessian matrix must be inverted at each iteration step.
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Gauss-Newton Algorithm

Letting Ξ(β) = ∇βf(β) we have

H(β) = − 2

T
∇2

βf(β)[y − f(β)] +
2

T
Ξ(β)′Ξ(β),

Ignoring the first term, an approximation to H(β) is 2Ξ(β)′Ξ(β)/T ,

which requires only the first order derivatives and is guaranteed to be

p.s.d. The Gauss-Newton algorithm utilizes this approximation as

β(i+1) = β(i) +
[
Ξ
(
β(i)

)′
Ξ
(
β(i)

)]−1
Ξ
(
β(i)

)[
y − f

(
β(i)

)]
.

Note that the adjustment term can be obtained as the OLS estimate of

regressing y − f
(
β(i)

)
on Ξ

(
β(i)

)
; this is known as the Gauss-Newton

regression.
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Other Modifications

To maintain a correct search direction, H(i) needs to be p.d.

Correcting H(i) by: H
(i)
c = H(i) + c(i)I, where c(i) > 0 is chosen to

“force” H
(i)
c to be p.d.

For H̃ = H−1, one may compute H̃
(i)
c = H̃

(i)
+ cI. Such a correction

is used in the Marquardt-Levenberg algorithm.

The quasi-Newton method corrects H̃
(i)

by a symmetric matrix:

H̃
(i+1)

= H̃
(i)

+ C(i).

This is used by the Davidon-Fletcher-Powell (DFP) algorithm and the

Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
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Initial Values and Convergence Criteria

Initial values: Specified by the researcher or obtained using a random

number generator. Prior information, if available, should also be

taken into account.

Convergence criteria:∥∥β(i+1) − β(i)
∥∥ < c , where ‖ · ‖ denotes the Euclidean norm,∥∥g(β(i)

)∥∥ < c , or∣∣QT

(
β(i+1)

)
− QT

(
β(i)
)∣∣ < c .

For the Gauss-Newton algorithm, one may stop the algorithm when

TR2 is “close” to zero, where R2 is the coefficient of determination of

the Gauss-Newton regression.
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Digression: Uniform Law of Large Numbers

Consider the function q(zt(ω); θ). It is a r.v. for a given θ and a function

of θ for a given ω. Suppose {q(zt ; θ)} obeys a SLLN for each θ ∈ Θ:

QT (ω; θ) =
1

T

T∑
t=1

q(zt(ω); θ)
a.s.−→ Q(θ),

where Q(θ) is non-stochastic. Note that Ωc
0(θ) = {ω : QT (ω; θ) 6→ Q(θ)}

varies with θ.

Although IP(Ωc
0(θ)) = 0, ∪θ∈ΘΩc

0(θ) is an uncountable union of

non-convergence sets and may not have probability zero.

∩θ∈ΘΩ0(θ) may occur with probability less than one.
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When θ also depends on T (e.g., when θ is replaced by an estimator θ̃T ),

there may not exist a finite T ∗ such that QT (ω; θ̃T ) are arbitrarily close to

Q(ω; θ̃T ) for all T > T ∗. Thus, we need a notion of convergence that is

uniform on the parameter space Θ.

We say that QT (ω; θ) converges to Q(θ) uniformly in θ almost surely (in

probability) if

sup
θ∈Θ

|QT (θ)− Q(θ)| → 0, a.s. (in probability).

We also say that q(zt(ω); θ) obey a strong (or weak) uniform law of large

numbers (SULLN or WULLN).
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Example: Let zt be i.i.d. with zero mean and

qT (zt(ω); θ) = zt(ω) +


Tθ, 0 ≤ θ ≤ 1

2T ,

1− Tθ, 1
2T < θ ≤ 1

T ,

0, 1
T < θ < ∞.

Observe that for θ ≥ 1/T and θ = 0,

QT (ω; θ) =
1

T

T∑
t=1

qT (zt ; θ) =
1

T

T∑
t=1

zt
a.s.−→ 0,

by Kolmogorov’s SLLN. For a given θ, we can choose T large enough such

that QT (ω; θ)
a.s.−→ 0, where 0 is the pointwise limit. Yet for Θ = [0,∞),

sup
θ∈Θ

|QT (ω; θ)| = |z̄T + 1/2| a.s.−→ 1/2,

so that the uniform limit is different from the pointwise limit.
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What is the extra condition needed to ensure SULLN if we already have,

for each θ ∈ Θ,

QT (θ) =
1

T

T∑
t=1

[qTt(zt ;θ)− IE(qTt(zt ;θ))]
a.s.−→ 0.

Suppose QT (θ) satisfies a Lipschitz-type condition: for θ and θ† in Θ,

|QT (θ)− QT (θ†)| ≤ CT‖θ − θ†‖ a.s.,

where |CT | ≤ ∆ a.s. and ∆ does not depend on θ. Then,

sup
θ∈Θ

|QT (θ)| ≤ sup
θ∈Θ

|QT (θ)− QT (θ†)|+ |QT (θ†)|.
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Given ε > 0, we can choose θ† such that ‖θ − θ†‖ < ε/(2∆). Then,

sup
θ∈Θ

|QT (θ)− QT (θ†)| ≤ CT
ε

2∆
≤ ε

2
,

uniformly in T . Also, by pointwise convergence of QT , |QT (θ†)| < ε/2 for

large T . Consequently, for all T sufficiently large,

sup
θ∈Θ

|QT (θ)| ≤ ε.

This shows that pointwise convergence and a Lipschitz condition on QT

together suffice for a SULLN or WULLN.

C.-M. Kuan (National Taiwan Univ.) Nonlinear Least Squares Theory March 9, 2010 23 / 33



Consistency

The NLS criterion function is QT (β) = T−1
∑T

t=1[yt − f (xt ;β)]2, and its

minimizer is the NLS estimator β̂T . Suppose IE[QT (β)] is continuous on

Θ1 such that βo is its unique, global minimum. If QT (β) is close to

IE[QT (β)], we would expect β̂T close to βo .

To see this, assuming that QT obeys a SULLN:

sup
β∈Θ1

∣∣QT (β)− IE[QT (β)]
∣∣→ 0,

for all ω ∈ Ω0 and IP(Ω0) = 1. Set

ε = inf
β∈Bc∩Θ1

(
IE[QT (β)]− IE[QT (βo)]

)
,

for an open neighborhood B of βo .
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For ω ∈ Ω0, we have for large T , IE[QT (β̂T )]− QT (β̂T ) < ε
2 , and

QT (β̂T )− IE[QT (βo)] ≤ QT (βo)− IE[QT (βo)] <
ε

2
,

because the NLS estimator β̂T minimizes QT (β). It follows that

IE[QT (β̂T )]− IE[QT (βo)]

≤ IE[QT (β̂T )]− QT (β̂T ) + QT (β̂T )− IE[QT (βo)] < ε,

for all T sufficiently large. As β̂T is such that IE[QT (β̂T )] is closer to

IE[QT (βo)] with probability one, it can not be outside the neighborhood B

of βo . As B is arbitrary, β̂T must be converging to βo almost surely.
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Q: How do we ensure a SULLN or WULLN?

If Θ1 is compact and convex, we have from the mean-value theorem and

the Cauchy-Schwartz inequality that

|QT (β)− QT (β†)| ≤ ‖∇βQT (β‡)‖ ‖β − β†‖ a.s.,

where β‡ is the mean value of β and β†, in the sense that

|β − β†| < |β‡ − β†|. Hence, the Lipschitz-type condition would hold for

CT = sup
β∈Θ1

∇βQT (β),

with ∇βQT (β) = −2
∑T

t=1∇βf (xt ;β)[yt − f (xt ;β)]/T . Note that

∇βQT (β) may be bounded in probability, but it may not be bounded in

an almost sure sense. (Why?)
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We impose the following conditions.

[C1] {(yt w′
t)
′} is a sequence of random vectors, and xt is vector

containing some elements of Yt−1 and Wt .

(i) The sequences {y2
t }, {yt f (xt ;β)} and {f (xt ;β)2} all obey a WLLN for

each β in Θ1, where Θ1 is compact and convex.

(ii) yt , f (xt ;β) and ∇βf (xt ;β) all have bounded second moment

uniformly in β.

[C2] There exists a unique parameter vector βo such that

IE(yt | Yt−1,Wt) = f (xt ;βo).

Theorem 8.1

Given the nonlinear specification: y = f (x;β) + e(β), suppose that [C1]
and [C2] hold. Then, β̂T

IP−→ βo .
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Remark: Theorem 8.1 is not satisfactory because it only deals with the

convergence to the global minimum. Yet, an iterative algorithm is not

guaranteed to find a global minimum of the NLS objective function.

Hence, it is more reasonable to expect the NLS estimator converging to

some local minimum of IE[QT (β)]. Therefore, we shall, in what follows,

assert only that the NLS estimator converges in probability to a local

minimum β∗ of IE[QT (β)]. In this case, f (x;β∗) is, at most, an

approximation to the conditional mean function.
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Asymptotic Normality

By the mean-value expansion of ∇βQT (β̂T ) about β∗,

0 = ∇βQT (β̂T ) = ∇βQT (β∗) +∇2
βQT (β†

T )(β̂T − β∗),

where β†
T is a mean value of β̂T and β∗. Thus, when ∇2

βQT (β†
T ) is

invertible, we have

√
T (β̂T − β∗) = −[∇2

βQT (β†
T )]−1

√
T∇βQT (β∗)

= −HT (β∗)−1
√

T∇βQT (β∗) + oIP(1),

where HT (β) = IE[∇2
βQT (β)]. That is,

√
T (β̂T − β∗) and

−HT (β∗)−1
√

T∇βQT (β∗) are asymptotically equivalent.
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Under suitable conditions,

√
T∇βQT (β∗) = − 2√

T

T∑
t=1

∇βf (xt ;β
∗)[yt − f (xt ;β

∗)]

obeys a CLT, i.e., (V∗
T )−1/2

√
T∇βQT (β∗)

D−→ N (0, Ik), where

V∗
T = var

(
2√
T

T∑
t=1

∇βf (xt ;β
∗)[yt − f (xt ;β

∗)]

)
.

Then for D∗
T = HT (β∗)−1V∗

THT (β∗)−1,

(D∗
T )−1/2HT (β∗)−1

√
T∇βQT (β∗)

D−→ N (0, Ik).

By asymptotic equivalence,

(D∗
T )−1/2

√
T (β̂T − β∗)

D−→ N (0, Ik).
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When D∗
T is replaced by a consistent estimator D̂T ,

D̂
−1/2

T

√
T (β̂T − β∗)

D−→ N (0, Ik).

Note that

HT (β∗) =
2

T

T∑
t=1

IE
([
∇βf (xt ;β

∗)
][
∇βf (xt ;β

∗)
]′)

− 2

T

T∑
t=1

IE
(
∇2

βf (xt ;β
∗)
[
yt − f (xt ;β

∗)
])

,

which can be consistently estimated by its sample counterpart:

ĤT =
2

T

T∑
t=1

[
∇βf (xt ; β̂T )

][
∇βf (xt ; β̂T )

]′− 2

T

T∑
t=1

∇2
β

[
f (xt ; β̂T )êt

]
.
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When εt = yt − f (xt ;β
∗) are uncorrelated with ∇2

βf (xt ;β
∗), HT (β∗)

depends only on the expectation of the outer product of ∇βf (xt ;β
∗) so

that ĤT may be simplified as

ĤT =
2

T

T∑
t=1

[
∇βf (xt ; β̂T )

][
∇βf (xt ; β̂T )

]′
.

This is analogous to estimating Mxx by
∑T

t=1 xtx
′
t/T in linear regressions.

If {εt} is not a martingale difference sequence with respect to Yt−1 and

Wt , V∗
T can be consistently estimated using a Newey-West type

estimator. This is more likely in practice as the NLS estimator typically

converges to a local optimum β∗.
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Wald Tests

Hypothesis: Rβ∗ = r, where R is a q × k selection matrix and r is a

q × 1 vector of pre-specified constants.

By the asymptotic normality result, we have under the null that

Γ̂
−1/2

T

√
TR(β̂T − β∗) = Γ̂

−1/2

T

√
T (Rβ̂T − r)

D−→ N (0, Iq),

where Γ̂T = RD̂TR′, and D̂T is a consistent estimator for D∗
T .

The Wald statistic is

WT = T (Rβ̂T − r)Γ̂
−1

T (Rβ̂T − r)′
D−→ χ2(q).

For nonlinear restrictions r(β∗) = 0, the Wald test is not invariant

with respect to the form of r(β) = 0.
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