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Data Snooping

In economics and finance, it is common to test if a “new” model for

some target variable (e.g., inflation or index return) has superior

performance than the benchmark.

This is a multiple testing problem because many other related models

have also been tested before.

There may be data snooping bias when those models are evaluated

using the same data set and when the test results are ignored (Lo and

MacKinglay, 1990; Brock, Lakonishok, and LeBaron, 1992).

Data snooping is mainly due to data re-use; ignoring data snooping

bias may yield very misleading conclusions.
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Example 1: Predictive Power of Technical Trading Rules

The predictive power of technical analysis has been a long-debated issue in

both industry and academia since Fama and Blume (1966). Recent

supporting evidence includes Sweeney (1988), Blume, Easley, and

O’Hara (1994), Neely, Weller, and Dittmar (1997), Brown, Goetzmann,

and Kumar (1998), Gencay (1998), Lo, Mamaysky, and Wang (2000), and

Savin, Weller, and Zvingelis (2007), among others.

“given enough computer time, we are sure that we can find a

mechanical trading rule which ‘works’ on a table of random

numbers ...” (Jensen and Benington, J. of Finance, 25, p. 470).

Q1: Is the predictive ability of these rules real or due to chance?

Q2: If real, what are they?
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Example 2: Performance of Mutual Funds

Mutual (hedge) funds are usually evaluated based on their performance

relative to an index, in terms of mean returns and/or Sharpe ratios. For

example, among 220 mutual funds in Taiwan, there are 153 funds with

mean monthly returns higher than that of Taipei Weighted Index during

2002–2007. Also, 134 funds have higher Sharpe ratios during the same

period.

Q1: Did those funds really beat the market? Is the “superior”

performance real or due to chance?

Q2: If real, what are they?
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Example 3: Predictive Ability of Term Spreads

It has been found that the term spreads between some short- and

long-term interest rates have predictive ability for real GDP growth, e.g.,

Laurent (1988, 1989), Stock and Watson (1989), Estrella and Hardouvelis

(1991), Estrella and Mishkin (1998), Hamilton and Kim (2002), Mody and

Taylor (2004), and Bordo and Haubrich (2008b). Ang et al. (2006) find

that models with certain short rates suffice, yet Bordo and Haubrich

(2008b) show that combination of short rates and term spreads provides

superior predictive power.

Q1: Is the “superior” predictive power of a term spread model real or

due to chance?

Q2: If real, what are they?
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Solutions to Data Snooping

1 Data approach: Testing different but comparable data sets (e.g.

Lakonishok, Shleifer, and Vishny, 1994); validating a result using

sub-samples (e.g. Brock, Lakonishok, and LeBaron, 1992).

2 Testing procedures:

Individual tests with the significance level controlled by the Bonferroni

inequality (e.g. Lakonishok and Smidt, 1988).

One-step tests: Reality Check (RC) of White (2000); Superior

Predictive Ability (SPA) test of Hansen (2005)

Stepwise tests: Step-RC of Romano and Wolf (2005); Step-SPA test of

Hsu, Hsu, and Kuan (2010).

Generalization based on generalized familywise error rate: Lehmann

and Romano (2005), Romano and Shaikh (2006a, b), Romano and

Wolf (2007), and Donald, Hsu, and Kuan (2010).
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Applications of Multiple Tests

1 Technical trading rule performance: Sullivan, Timmermann, and

White (1999), White (2000), Hsu and Kuan (2005), Qi and

Wu (2006), Hsu, Hsu, and Kuan (2010).

2 Calendar effect in stock returns: Sullivan, Timmermann, and

White (2001), Hansen, Lunde, and Nason (2004), Coakley, Marzano,

and Nankervis (2010).

3 Model comparison: Hansen (2005), Hansen and Lunde (2005), Kao,

Kuan, and Chen (2010).

4 Fund performance: Romano and Wolf (2005), Chuang and

Kuan (2010), Yen and Hsu (2010).
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A Multiple Testing Problem

dk,t , k = 1, . . . ,m and t = 1, . . . , n, are the performance measures

(relative to a benchmark) of the k-th model at time t.

For each k, IE(dk,t) = µk for all t; for each t, dk,t may be dependent

across k .

Example: For a given asset with return rt , let dk,t = δk,t−1rt denote

its realized return based on the k-th trading rule, where δk,t−1 is the

trading signal of the k-th rule. Clearly, dk,t involve the same rt and

hence are dependent across k .

Null: No model has positive performance measure

Hk
0 : µk ≤ 0, k = 1, ...,m.
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Individual Tests

Letting I be the set of indices of true hypotheses,

familywise error rate (FWER) = IP(Reject at least one Hk
0 , k ∈ I).

Assuming independence among the tests of testing Hk
0 at 5% level,

the FWER of is:

m 1 2 5 10 50

FWER .05 .10 .23 .40 .92

Bonferroni: Setting each significance level to α/m we have

FWER ≤
∑
k∈I

IP(Reject Hk
0 ) ≤

∑
k∈I

α

m
≤ α.

These inequalities are very loose and hence yield a very conservative

test. This method is not practically useful when m is large.
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Joint Test

We may construct a joint test of µ based on the asymptotic

normality:

√
n(d̄n − µ)

D−→ N (0, Ω),

where d̄n = n−1
∑n

t=1 dt with dt = (d1,t , . . . , dm,t)
>, µ = IE(dt), and

Ω is the asymptotic covariance matrix.

More difficulties:

Implementing this test is not easy when m is large. For example,

consistent estimation of Ω for a large m would be practically

cumbersome.

It is not clear how the null distribution should be determined under

inequality hypothesis.
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Multiple Testing vs. Joint Testing

Multiple testing is concerned with drawing individual inferences about m

hypotheses (considering equality hypothesis for now):

Hk
0 : µk = 0, vs. Hk

a : µk 6= 0, for k = 1, ...,m.

Join testing is concerned with testing the single hypothesis:

H0 : µk = 0 ∀k , vs. Ha : µk 6= 0 for some k.

One may conduct multiple testing based on a joint test.

As shown in Romano and Wolf (2005), a join test for a multiple

testing problem is sub-optimal.

A rejection of the joint hypothesis H0 does not necessarily lead to the

rejection of one of the individual hypotheses Hk
0 .
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Least Favorable Configuration

H0

θ1

θ2

LFC

ւ

Figure: The configuration under the null (θ1 ≤ 0 nad θ2 ≤ 0) that is least

favorable to the alternative.
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White’s Reality Check

White’s RC determines the null distribution by the LFC: µ = 0:

RCn = max
k=1,...,m

√
nd̄k

D−→ max
i=1,...,m

Zi ,

where (Z1, . . . ,Zm) ∼ N (0, Ω).

The inference is based on the bootstrapped null distribution:

max
k=1,...,m

√
n
(
d̄∗k (b)− d̄k

)
, b = 1, . . . ,B,

where d̄∗k (b) is the sample average of the b-th bootstrapped sample.

Note: Bootstrap dt = (d1,t , d2,t , . . . , dm,t)
>, t = 1, . . . , n, to preserve

dependence across models.
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Drawbacks of Reality Check

When LFC fails (some µj = 0 and some µi < 0),

RCn
D−→ max{N (0, Ω0)}, which does not depend on the “poor”

models with negative mean. Yet, this distribution is stochastically

dominated by the distribution under LFC: max{N (0, Ω)}.
The power of RC is thus adversely affected because the bootstrapped

p-value is artificially increased (or the bootstrapped critical value is

larger than it should be).

The power of RC deteriorates when more models with µ < 0 are

included in the test (power could be driven to zero by including many

poor models).
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Hansen’s SPA Test

Hansen (2005): SPAn = max
(
maxk=1,...,m

√
nd̄k , 0

)
, with a re-centered,

bootstrapped distribution:

max
k=1,...,m

√
n
(
d̄∗k (b)− d̄k + µ̂k

)
, b = 1, . . . ,B,

where µ̂k = d̄k1
(√

nd̄k ≤ An,k

)
and An,k = −σ̂k

√
2 log log n.

When µk = 0, µ̂k = 0 almost surely.

When µk < 0, n1/2d̄k ≤ An,k with probability approaching one, so

that µ̂k
IP−→ µk .

We may replace log log n by some an →∞ and an/n→ 0.

Note: Re-centering leads to a better approximation to max{N (0, Ω0)}
and hence a more powerful test.
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Digression: Holm’s Procedure

Step-down procedure: Set α1 ≤ α2 ≤ · · · ≤ αm and denote the

ordered p-values for individual tests as p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(m).

If p̂(1) > α1, no hypothesis is rejected; otherwise reject H(1).

If p̂(1) ≤ α1, . . . , p̂(r) ≤ αr , reject H
(1)
0 , . . . ,H

(r)
0 .

Holm (1979) and its generalization:

Control FWER ≤ α by setting αj = α/(m − j + 1).

Control k-FWER ≤ α by setting

αj =

{
kα/m, if j ≤ k ;

kα/(m − j + k), otherwise.

In Holm’s procedure, αj increases with j , so that the test is able to

reject more hypothesis than does the Bonferroni method where

αj = α/m or αj = kα/m is a constant.
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Stepwise RC and SPA Tests

Romano and Wolf (2005) and Hsu et al. (2010): Identify as many

outperforming models as possible using a stepwise procedure, while

controlling

FWER = IPH0
(Reject at least one H i

0, i ∈ I),

where I is the set of indices of true hypotheses.

1 Reject model k when n1/2d̄k is greater than the bootstrapped RC (or

SPA) critical value.

2 Remove d̄k of the rejected models from the data and re-bootstrap the

critical value using the remaining data.

3 Repeating (1) and (2) based on the newly bootstrapped critical value.

The procedure stops when no model can be rejected.
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Asymptotic Properties

Step-SPA Test (Hsu, Hsu, and Kuan, 2010)

1 (Exact FWER) Given level α0, the Step-SPA test has FWER = α0

when n tends to infinity if and only if there is at least one µk = 0.

2 (Consistency) Hk
0 with µk > 0 will be rejected by the Step-SPA test

with probability approaching 1 when n tends to infinity.

3 (Power) The Step-SPA test is more powerful than the Step-RC test

under the notions of power defined in Romano and Wolf (2005).

The FWER of the Step-RC test ≤ α0.

If there is no µk = 0, the FWER would be zero asymptotically, so

that no null hypothesis will be incorrectly rejected.
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The power notions in Romano and Wolf (2005):

Minimal power: Probability of rejecting at least one false null

hypothesis.

Global power: Probability of rejecting all false null hypotheses.

Average power: The average of the individual probabilities of

rejecting each false null hypothesis. This is equivalent to the expected

number of false hypotheses that will be rejected.

The expected proportion of false hypotheses that will be rejected.

The probability of rejecting at least γ × 100% of the false null

hypotheses, where γ is a user-chosen parameter.
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Simulations

Returns: xi ,t = ci + γxi ,t−1 + εi ,t , i = 1, . . . ,m and t = 1, . . . , n, where

εi ,t are i.i.d. N (0, σ2), ci = a, 0,−a for, respectively, i = 1, . . . ,m1,

i = m1 + 1, . . . ,m1 + m2, and ci = −a for i = m1 + m2 + 1, . . . ,m,

d̄k = x̄k , the average of the k-th return series.

a = 0.0008 (8 basis points), γ = 0.01, and σ = 0.005.

m1 “outperforming” returns with positive mean 0.00081;

m2 “neutral” returns with a zero mean;

m −m1 −m2 “poor” returns with a negative mean −0.00081.

m = 90, 900 and 9,000; for each m, we consider m1 = m2 = m/3

(equal groups) and m1 = m2 = m/9 (unequal groups).

n = 1000, R = 500, B = 500, Q = 0.9.
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Table 1: Average rejection rates and FWERs of studentized tests.

Equal group Unequal group All neutral

Test AR rate (1-step) AR rate (all-steps) FWE rate AR rate (1-step) AR rate (all-steps) FWE rate FWE rate

30 outperforming + 30 neutral + 30 poor 10 outperforming + 10 neutral + 70 poor 90 neutral

Step-SPA 96.6 98.0 4.8 98.8 99.4 4.8 3.2

Step-RC 95.3 96.4 2.2 95.4 95.6 0.8 3.2

300 outperforming + 300 neutral + 300 poor 100 outperforming + 100 neutral + 700 poor 900 neutral

Step-SPA 86.1 89.4 3.0 92.0 94.3 3.4 1.8

Step-RC 83.8 85.9 1.2 84.0 84.6 0.4 1.8

3000 outperforming + 3000 neutral + 3000 poor 1000 outperforming + 1000 neutral + 7000 poor 9000 neutral

Step-SPA 68.8 72.6 2.0 78.6 82.5 1.6 1.2

Step-RC 65.2 67.8 1.0 65.0 65.6 0.6 1.2
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A Summary

The stepwise procedure does identify more outperforming returns

than the corresponding one-step test.

In terms of the average rejection rate and FWER, the Step-SPA test

performs better than the Step-RC test when there are “poor” models.

The improvement of the Step-SPA test on the Step-RC test is more

obvious when there are more models that have negative return (the

case of unequal groups).

The studentized tests perform slightly better than the

non-studentized counterparts.
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Empirical Study I: Trading Rule Performance

Hsu, Hsu, and Kuan (2010, JEF)

We evaluate the predictive ability of technical trading rules based on

the data of market indices and corresponding ETFs.

ETFs have been powerful investment tools for arbitrageurs and hedge

funds because they track market indices closely and can be

conveniently traded at low transaction costs.

Data: Global insight and Yahoo Finance

U.S. growth markets: S&P SmallCap 600/Citigroup Growth Index

(SP600SG), Russell 2000 Index (RUT2000), NASDAQ Composite

Index (NASDAQ), and the ETFs that track these indices.

Emerging markets: MSCI Emerging Markets Index, MSCI Brazil Index,

MSCI South Korea Index, MSCI Malaysia Index, MSCI Mexico Index,

MSCI Taiwan Index, and their ETFs.
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Table 2: The pre- and post-ETF periods.
Table 2: The pre- and post-ETF periods for market indices and their ETFs.

Market Identifier Index Pre-ETF Period Obs. ETF Incept. date

U.S. SP600SG S&P SmallCap 600/Citigroup Growth Index 1/4/1989 – 12/31/1999 2779 July 24, 2000

Markets RUT2000 Russell 2000 Index 1/3/1990 – 12/31/1999 2527 March 1, 2000

NASDAQ NASDAQ Composite Index 1/3/1990 – 12/31/1998 2275 Sept. 25, 2003

Emerging MSCI Emerging Markets Index 1/4/1993 – 12/31/2002 2601 April 7, 2003

Brazil MSCI Brazil Index 1/1/1990 – 12/31/1999 2610 July 10, 2000

Emerging Korea MSCI South Korea Index 1/2/1990 – 12/31/1999 2865 May 9, 2000

Markets Malaysia MSCI Malaysia Index 1/1/1988 – 12/29/1995 2086 March 12, 1996

Mexico MSCI Mexico Index 1/1/1988 – 12/29/1995 2086 March 12, 1996

Taiwan MSCI Taiwan Index 1/1/1990 – 12/31/1999 2610 June 20, 2000

Market Ticker ETF Post-ETF Period Obs. ETF Incept. date

U.S. IJT S&P SmallCap 600 Growth Index Fund 7/28/2000 – 12/30/2005 1364 July 24, 2000

Markets IWM Russell 2000 Index Fund 5/30/2000 – 12/30/2005 1406 March 1, 2000

ONEQ NASDAQ Composite Index Tracking Fund 10/1/2003 – 12/30/2005 568 Sept. 25, 2003

EEM MSCI Emerging Markets Index Fund 10/2/2003 – 12/30/2005 566 April 7, 2003

EWZ MSCI Brazil Index Fund 7/14/2000 – 12/30/2005 1368 July 10, 2000

Emerging EWY MSCI South Korea Index Fund 6/1/2000 – 12/30/2005 1401 May 9, 2000

Markets EWM MSCI Malaysia Index Fund 4/1/1996 – 12/30/2005 2453 March 12, 1996

EWW MSCI Mexico Index Fund 4/1/1996 – 12/30/2005 2453 March 12, 1996

EWT MSCI Taiwan Index FUnd 6/26/2000 – 12/30/2005 1384 June 20, 2000

Note: The pre- and post-ETF periods of NASDAQ Composite Index separate for almost 5 years because there was another

ETF (PowerShares QQQ Fund that tracks NASDAQ-100 Index) during that time. The pre-ETF period ends on Dec. 31, 1998,

which is before the inception of PowerShares QQQ Fund on March 9, 1999, and the post-ETF period begins on Oct. 1, 2003,

which is after the inception of NASDAQ Composite Index Tracking Fund on Sept. 25, 2003.

27
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Technical Rules and Performance Measures

There is a total of 16,380 rules: 9,120 moving averages (MA) rules

and 7,260 filter rules (FR). These rules encompass 2,049 MA rules and

497 filter rules used in Brock et al. (1992) and Sullivan et al. (1999).

The trading signals are generated from the technical rules operated

on market indices.

We evaluate whether technical rules have predictive power and, if

they do, whether this power is affected by the introduction of ETF.

Performance measures: Mean return, Sharpe ratio, x-statistic of

Sweeney (1986, 1988) which is mean return adjusted for a proportion

of risk premium, and studentized mean return. These measures take

into account the risk-free rate and transaction cost.
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Table 3: The numbers of outperforming rules in pre- and post-ETF periods.

Market Index/ETF Period Outperforming rules

Mean return Sharpe ratio x-statistic St. mean ret.

U.S. S&P600SG pre-ETF 269 136 220 230

Indices RUT2000 pre-ETF 186 109 179 171

NASDAQ pre-ETF 33 1 5 7

U.S. IJT post-ETF 0 0 0 0

ETFs IWM post-ETF 0 0 0 0

ONEQ post-ETF 0 0 0 0

Emerging pre-ETF 797 414 917 758

Emerging Brazil pre-ETF 117 88 0 143

Market Korea pre-ETF 0 0 0 0

Indices Malaysia pre-ETF 81 2 70 68

Mexico pre-ETF 559 370 331 490

Taiwan pre-ETF 0 0 0 0

EEM post-ETF 0 0 0 0

Emerging EWZ post-ETF 0 0 0 0

Market EWY post-ETF 0 0 0 0

ETFs EWM post-ETF 55 0 66 0

EWW post-ETF 241 152 285 198

EWT post-ETF 0 0 0 0

1
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Empirical Results

The introduction of ETFs affects predictability.

US Markets: Technical rules are quite powerful in predicting U.S.

indices in pre-ETF periods but not in post-ETF periods.

Emerging Markets: There are significant rules for 4 out of 6 emerging

market indices in pre-ETF periods but only 2 in post-ETF periods.

There are “thick” sets of outperforming rules which are strong

evidence for return predictability (Timmermann and Granger, 2004).

The predictive power is not a consequence of serial correlation in data.

The Step-SPA test identifies significant rules for MSCI Malaysia and

Mexico Index Funds whose returns are serially uncorrelated.

The Step-SPA test does not find any outperforming rules for MSCI

Taiwan Index Fund which has significant first-order autocorrelation.

C.-M. Kuan (Finance & CRETA, NTU) Multiple Testing w/o Data Snooping Bias May 2, 2011 29 / 49



Table 4: The identified best rules and their break-even transaction costs.
Table 5: The identified best rules and their break-even transaction costs.

Market Index/ETF Best rule and break-even transaction cost

Best Mean Break-even Best Sharpe Break-even Best x-stat Break-even

rule (p-value) cost (bps) rule (p-value) cost (bps) rule (p-value) cost (bps)

U.S. S&P600SG MA .16 (.00) 17 MA .17 (.01) 12 MA .15 (.00) 17

Indices RUT2000 MA .15 (.00) 15 MA .17 (.00) 11 MA .14 (.00) 15

NASDAQ MA .13 (.00) 13 MA .11 (.00) 7 MA .11 (.00) 9

U.S. IJT MA .06 (.99) N/A FR .06 (.94) N/A MA .06 (.82) N/A

ETFs IWM MA .06 (.97) N/A FR .05 (.96) N/A MA .06 (.86) N/A

ONEQ FR .09 (.65) N/A FR .09 (.89) N/A FR .09 (.37) N/A

Emerging MA .22 (.00) 27 MA .19 (.00) 22 MA .22 (.00) 28

Emerging Brazil FR .30 (.00) 16 FR .10 (.01) 12 FR .18 (.58) N/A

Market Korea MA .14 (.38) N/A FR .05 (.84) N/A MA .14 (.37) N/A

Indices Malaysia MA .15 (.00) 10 FR .11 (.03) 6 MA .15 (.00) 10

Mexico FR .25 (.00) 28 FR .13 (.00) 17 FR .24 (.00) 22

Taiwan MA .09 (.66) N/A FR .05 (.75) N/A MA .09 (.40) N/A

EEM MA .06 (.86) N/A FR .08 (.88) N/A MA .06 (.81) N/A

Emerging EWZ FR .17 (.44) N/A FR .08 (.35) N/A FR .17 (.32) N/A

Market EWY FR .14 (.77) N/A FR .06 (.90) N/A FR .13 (.42) N/A

ETFs EWM FR .21 (.04) 7 FR .08 (.19) N/A FR .21 (.03) 7

EWW FR .24 (.00) 21 FR .13 (.00) 14 FR .24 (.00) 20

EWT MA .09 (.99) N/A FR .04 (1.00) N/A MA .09 (.72) N/A

Notes: (1) The 3rd, 6th, and 9th columns are the best rules identified by the Step-SPA test in terms of, respectively, the

mean returns (%), Sharpe ratios, and x-statistics (%) at 5% level. The details of the best rules are summarized in Appendix

C. (2) The 4th, 7th, and 10th columns are the mean returns, Sharpe ratios, and x-statistics of the best rules and their

p-values. (3) The 5th, 8th, and 11th columns are the break-even costs (in bps) for the best rules identified by the Step-SPA

test. (4) MA denotes moving average rules, while FR denotes filter rules.

30
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Discussions

Q: Why can technical rules predict the stock markets?

Due to serial correlations in the data (e.g., Fama and Blume, 1966).

Technical rules capture some information contained in the movements

of prices, volumes, and order flows (Treynor and Ferguson, 1985;

Brown and Jennings, 1990; Blume, Easley, and O’Hara, 1994; Kavajecz

and Odders-White, 2004)

Market maturity matters (Ready, 2002; Hsu and Kuan, 2005); our

results support this explanation.

Q: Can the predictive power be transformed to profit?

A: With good execution and low transaction cost, the potential

profits from outperforming rules may exceed associated risk premia.
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Empirical Study II: Mutual Fund Performance

Chuang and Kuan (2010)

Data: 220 mutual funds; 60 monthly data of 2002.11–2007.10

Benchmarks: Taipei Weighted Index, MSCI Taiwan, TW50

Performance measures: Mean return, Sharpe ratio, abnormal return

(3-factor model)

Table 5: Number of funds that significantly outperform the benchmark

Weighted Index MSCI Taiwan TW50

Criterion Num t test S-SPA Num t test S-SPA Num t test S-SPA

Mean 153 11 0 166 28 0 159 23 0

Sharpe 134 15 1 176 24 1 154 16 1

Abnormal 176 46 3 178 47 3 147 29 2
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Generalized Familywise Error Rate

FWER is a stringent criterion because it is defined on one false rejection.

If one is willing to tolerate more incorrect rejections, the resulting test

would be able to identify more superior models (have better power).

Lehmann and Romano (2005): For a given k, we control

k-FWER = IPH0
(Reject at least k of H i

0, i ∈ I).

Instead of allowing for a fixed number of false rejections, one may

allow for more false rejections by keeping the false discovery

proportion (FDP) constant:

FDP= (number of false rejections)/(number of total rejections).

For a given γ ∈ (0, 1), one controls IP(FDP > γ) < αo .
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Single-Step Control of k-FWER

For S ⊂ A = {1, ...,m}, define the following (1− α)-th quantile:

cS(1−α, k, IP) := inf

{
q : IP

(
k- max i∈S

√
n(d̄i−µi ) ≤ q

)
≥ 1−α

}
,

where k-max denotes the k-th largest value.

Setting S = I, reject H i
0 if
√

nd̄i > cI(1− α, k , IP), so that

k-FWER = IP

{
k- max

i∈I

√
n(d̄i − µi ) > cI(1− α, k, IP)

}
≤ α,

where I is the set of indices of true hypothesis.

Replacing unknown I and IP by, resp., A and the bootstrapped ÎPn,

we reject H i
0 if
√

nd̄i > cA(1− α, k, ÎPn) .

All individual tests adopt the same criterion which is conservative

because, as I ⊂ A, cI ≤ cA.
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Step-Down Control of k-FWER

Romano and Wolf (2007) (cf. Holm, 1979):

1 Let A1 = {1, . . . ,m}. Reject H i
0 if

√
nd̄i > cA1

(1− α, k, ÎPn).

2 Let R1 = {i : H i
0 is rejected at stage 1} and A2 = A1\R1.

The procedure stops if |R1| < k .

Reject H i
0, i ∈ A2, if

√
nd̄i > ĉA2(1− α, k), where

ĉA2(1− α, k) = max
M1

{
cK(1− α, k , ÎPn) : K = M1 ∪ A2

}
,

with M1 any subset of R1 such that |M1| = k − 1, i.e., a set of k − 1

hypotheses that have been rejected at stage 1.
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Step-Down Control of k-FWER (Cont’d)

Let Rj = {i : H i
0 is rejected at stage j} and Aj+1 = Aj\Rj ,

j = 2, 3, . . .

The procedure stops if |Rj | < k .

We reject H i
0, i ∈ Aj+1, if

√
nd̄i > ĉAj+1(1− α, k), where

ĉAj+1(1− α, k) = max
Mj

{
cK(1− α, k , ÎPn) : K = Mj ∪ Aj+1

}
,

with Mj any subset of ∪ji=1Ri such that |Mj | = k − 1.

Note: When k = 1, Step-SPA(k) simply reduces to the Step-SPA test of

Hsu, Hsu, and Kuan (2010).
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Remarks:

To compute the critical value at each step, it is important to consider

not only the hypotheses that have not been rejected (Aj+1) but also

those might have been incorrectly rejected in previous steps (Mj with

|Mj | = k − 1). As the latter hypotheses are unknown to us, we take

the largest possible critical value among those based on Mj ∪ Aj+1.

Computing the critical values is computationally demanding, because

we need to consider all possible Mj ∪ Aj+1.

The step-down control of Romano and Wolf (2007) is based on the

bootstrapped distribution without re-centering and hence ought to

suffer from power loss, as shown in Hansen (2005) and Hsu, Hsu, and

Kuan (2010).
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The Step-SPA(k) Test

The Step-SPA(k) test is the stepwise SPA test that controls k-FWER.

The (studentized) statistic is the same as the Step-SPA test.

The critical values q̂Aj
(1− α, k) are obtained from the re-centered,

bootstrapped distribution of

k- maxj=1,...,m

√
n
(
d̄∗j (b)− d̄j + µ̂j

)
, b = 1, . . . ,B,

with µ̂j = d̄j1
(√

nd̄j ≤ −anσ̂j
)
, where an diverges and

limn an/
√

n = 0.

Note: an does not have to be log(log n).
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Asymptotic Properties

Step-SPA(k) Test

1 (k-FWER) Given level α0, the Step-SPA(k) test has k-FWER ≤ α0

when n tends to infinity.

2 (Consistency) The k-th model with µk > 0 will be rejected by the

Step-SPA(k) test with probability approaching 1 when n tends to

infinity.

3 (Power) The Step-SPA(k) test is more powerful than the stepwise

test of Romano and Wolf (2007), under any notions of power defined

in Romano and Wolf (2005).
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Simulations

Data: Models with N (µ, 1), each has n = 250 or 500 observations

S = 125: 100 of them with µ = 0, 15 with µ = 0.25, 10 with µ = 0.5

S = 125: 50 with µ = 0, 15 with µ = 0.25, 10 with µ = 0.5, 35 with

µ = −0.25, 15 with µ = −0.5

S = 250: with and without negative means

S = 500: with and without negative means

No. of bootstraps: B = 500; number of replications: R = 1000

4 Tests with α = 5%:

Step-RC of Romano and Wolf (2005)

Step-RC(3) of Romano and Wolf (2007) with 3-FWER

Step-SPA of Hsu, Hsu, and Kuan (2010)

Step-SPA(3) with 3-FWER
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Table: Test performance: n = 250 and S = 125 without negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 15.87 18.83 16.54 19.92

Avg. False Rej. 0.066 0.348 0.084 0.415

FWER 3.3% 12.3% 4.3% 12.6%

3-FWER 0.4% 4.2% 0.4% 4.4%

Avg. Power 63.2% 73.9% 65.8% 78.0%

Model Correlation ρ = 0.25

Avg. Rej. 18.58 21.28 19.38 22.31

Avg. False Rej. 0.067 0.341 0.082 0.449

FWER 3.1% 11.4% 4.1% 12.9%

3-FWER 0.4% 4.0% 0.4% 4.5%

Avg. Power 74.0% 83.8% 77.2% 87.4%
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Table: Test performance: n = 250 and S = 125 with negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 15.74 18.60 17.40 20.92

Avg. False Rej. 0.047 0.200 0.094 0.400

FWER 2.7% 8.0% 4.7% 13.9%

3-FWER 0.5% 2.1% 0.9% 4.1%

Avg. Power 62.8% 73.6% 69.2% 82.1%

Model Correlation ρ = 0.25

Avg. Rej. 18.35 21.00 20.23 23.10

Avg. False Rej. 0.042 0.195 0.095 0.413

FWER 2.6% 7.8% 4.7% 14.3%

3-FWER 0.4% 2.1% 0.8% 3.8%

Avg. Power 73.2% 83.2% 80.5% 90.8%

Note: There are only false rejections of models with mean zero.
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Table: Test performance: n = 250 and S = 250 without negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 29.46 34.52 30.63 36.28

Avg. False Rej. 0.087 0.363 0.090 0.379

FWER 4.1% 11.2% 4.4% 12.3%

3-FWER 1.0% 4.1% 1.0% 4.3%

Avg. Power 58.7% 68.3% 61.1% 71.8%

Model Correlation ρ = 0.25

Avg. Rej. 34.63 39.57 36.14 41.74

Avg. False Rej. 0.079 0.374 0.081 0.385

FWER 4.0% 11.6% 4.2% 12.5%

3-FWER 0.8% 4.1% 0.8% 4.1%

Avg. Power 69.1% 78.4% 72.1% 82.7%
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Table: Test performance: n = 250 and S = 250 with negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 29.41 34.34 32.23 38.22

Avg. False Rej. 0.036 0.188 0.075 0.340

FWER 2.4% 9.0% 4.6% 13.7%

3-FWER 0.3% 2.3% 0.8% 3.6%

Avg. Power 58.7% 68.3% 64.3% 75.8%

Model Correlation ρ = 0.25

Avg. Rej. 34.56 39.42 37.87 43.47

Avg. False Rej. 0.035 0.195 0.083 0.354

FWER 2.4% 9.1% 4.8% 13.8%

3-FWER 0.3% 2.4% 0.9% 3.9%

Avg. Power 69.1% 78.5% 75.6% 86.2%

Note: There are only false rejections of models with mean zero.
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Table: Test performance: n = 500 and S = 250 with negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 42.43 45.83 45.56 48.73

Avg. False Rej. 0.047 0.202 0.085 0.393

FWER 2.4% 7.6% 4.3% 12.2%

3-FWER 0.6% 1.8% 0.7% 3.7%

Avg. Power 84.8% 91.3% 90.9% 96.7%

Model Correlation ρ = 0.25

Avg. Rej. 46.98 48.79 48.95 50/14

Avg. False Rej. 0.051 0.205 0.084 0.393

FWER 2.7% 7.6% 4.1% 12.1%

3-FWER 0.6% 1.8% 0.8% 3.7%

Avg. Power 93.9% 97.2% 97.7% 99.5%

Note: There are only false rejections of models with mean zero.

C.-M. Kuan (Finance & CRETA, NTU) Multiple Testing w/o Data Snooping Bias May 2, 2011 45 / 49



Table: Test performance: n = 250 and S = 500 without negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 54.78 63.33 56.67 66.40

Avg. False Rej. 0.099 0.338 0.099 0.345

FWER 3.5% 8.2% 3.5% 8.9%

3-FWER 1.9% 3.4% 1.9% 3.4%

Avg. Power 54.8% 63.3% 56.7% 66.4%

Model Correlation ρ = 0.25

Avg. Rej. 65.07 74.66 67.77 78.33

Avg. False Rej. 0.083 0.301 0.083 0.317

FWER 2.8% 7.4% 2.8% 8.6%

3-FWER 1.6% 3.0% 1.6% 3.0%

Avg. Power 65.0% 74.4% 67.7% 78.0%

C.-M. Kuan (Finance & CRETA, NTU) Multiple Testing w/o Data Snooping Bias May 2, 2011 46 / 49



Table: Test performance: n = 250 and S = 500 with negative means.

Model Correlation ρ = 0

Step-RC Step-RC(3) Step-SPA Step-SPA(3)

Avg. Rej. 55.34 64.08 60.03 70.96

Avg. False Rej. 0.060 0.152 0.096 0.336

FWER 3.2% 5.2% 3.2% 110.4%

3-FWER 0.8% 1.6% 1.2% 3.2%

Avg. Power 55.3% 63.9% 59.9% 70.6%

Model Correlation ρ = 0.25

Avg. Rej. 65.44 74.85 71.36 83.24

Avg. False Rej. 0.068 0.160 0.100 0.352

FWER 3.2% 5.6% 3.2% 10.4%

3-FWER 0.8% 1.6% 1.6% 3.6%

Avg. Power 65.4% 74.7% 71.3% 81.9%

Note: There are only false rejections of models with mean zero.
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A Summary

Step-SPA(3) vs. Step-RC(3): More accurate 3-FWER and better

power; power improvement is more obvious when there are models

with negative means.

Step-SPA(3) vs. Step-SPA: Better power

For a given S , tests have better power when models are correlated.

For a given n, all powers deteriorate when S increases, yet the power

improvement of Step-SPA(3) over Step-RC(3) is roughly the same.

When there are models with zero mean and negative mean, only

those with zero mean may be incorrectly rejected. As such, allowing

for more false rejections (k-FWER) is not very costly in practice.
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Concluding Remarks

1 In large-scale, multiple testing problems, it is crucial to control a

proper measure of familywise error, e.g. FWER, k-FWER, or FDP.

The choice of such error measure ought to be context dependent.

A procedure that controls FDP is possible when the rejection of a

procedure that controls k-FWER is monotone in k, i.e., a hypothesis

rejected by a k1-FWER procedure must be rejected by a k2-FWER if

k1 < k2.

2 For testing inequality hypotheses, it would be better to avoid the least

favorable configuration.

3 There are numerous potential applications of the new stepwise testing

procedure, and they may result in different answers to empirical issues.
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