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Introduction

The behavior of a random variable is governed by its distribution.

Moment or summary measures:

Location measures: mean, median

Dispersion measures: variance, range

Other moments: skewness, kurtosis, etc.

Quantiles: quartiles, deciles, percentiles

Except in some special cases, a distribution can not be completely

characterized by its moments or by a few qunatiles.

Mean and median characterize the “average” and “center” of y but

may provide little info about the tails.
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Conventional Methods

For the behavior of y conditional on x, consider regression yt = x′tβ + et .

Least squares (LS): Legendre (1805)

Minimizing
∑T

t=1(yt − x′tβ)2 to obtain β̂T .

x′β̂T approximates the conditional mean of y given x.

Least absolute deviation (LAD): Boscovich (1755)

Minimizing
∑T

t=1 |yt − x′tβ| to obtain β̌T .

x′β̌T approximates the conditional median of y given x.

Both the LS and LAD methods provide only partial description of the

conditional distribution of y .
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Mosteller F. and J. Tukey, Data Analysis and Regression:

“What the regression curve does is (to) give a grand summary

for the averages of the distributions corresponding to the set of

xs. We could go further and compute several different regression

curves corresponding to the various percentage points of the

distributions and thus get a more complete picture of the set.

Ordinarily this is not done, and so regression often gives a rather

incomplete picture. Just as the mean gives an incomplete picture

of a single distribution, so the regression curve gives a

correspondingly incomplete picture for a set of distributions.”
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Quantiles

The θ th (0 < θ < 1) quantile of FY is

qY (θ) := F−1Y (θ) = inf{y : FY (y) ≥ θ}.

qY (θ) is an order statistic, and it can also be obtained by minimizing

an asymmetric (linear) loss function:

θ

∫
y>q
|y − q| dFY (y) + (1− θ)

∫
y<q
|y − q| dFY (y).

The first order condition of this minimization problem is

0 = −θ
∫
y>q

dFY (y) + (1− θ)

∫
y<q

dFY (y)

= −θ[1− FY (q)] + (1− θ)FY (q) = −θ + FY (q).
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Sample Quantiles

The sample counterpart of the asymmetric linear loss function is

1

T

T∑
t=1

ρθ(yt − q) =
1

T

[
θ
∑

t:yt≥q
|yt − q|+ (1− θ)

∑
t:yt<q

|yt − q|
]
,

where ρθ(u) = (θ − 1{u<0})u is known as the check function.

Given θ, minimizing this function yields the θ th sample quantile of y .

Key point: Other than sorting the data, a sample quantile can also be

found via an optimization program.

Given various θ values, we can compute a collection of sample

quantiles, from which the distribution can be traced out.
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ρθ

u

θ = 0.8

θ = 0.5

θ = 0.2

Figure: Check function ρθ(u) = (θ − 1{u<0})u.
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Quantile Regression (QR) Method

Koenker and Basset (1978)

Given yt = x′tβ + et , the θ th QR estimator β̂(θ) minimizes

VT (β; θ) =
1

T

T∑
t=1

ρθ(yt − x′tβ)

where ρθ(e) = (θ − 1{e<0})e.

For θ = 0.5, VT is symmetric, and β̂(0.5) is the LAD estimator.

x′β̂(θ) approximates the θ th conditional quantile function Qy |x(θ),

with β̂i (θ) the estimated marginal effect of the i th regressor on

Qy |x(θ).
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Finding the Solution to VT

Difficulties in estimation:

The QR estimator β̂(θ) does not have a closed form.

VT is not everywhere differentiable, so that standard numerical

algorithms do not work.

A minimizer of VT (β; θ) is such that the directional derivatives at

that point are non-negative in all directions w:

d

dδ
VT (β + δw; θ)

∣∣∣
δ=0

=
−1

T

T∑
t=1

ψ∗θ(yt − x′tβ, − x′tw)x′tw,

ψ∗θ(a, b) = θ − 1{a<0} if a 6= 0, ψ∗θ(a, b) = θ − 1{b<0} if a = 0.
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Let b be the point such that yt = x′tb for t = 1, . . . , k. This is a

minimizer of Vk because the directional derivative is

−1

k

k∑
t=1

(
θ − 1{−x′tw<0}

)
x′tw,

which must be non-negative for any w. Thus, b a basic solution to

the minimization of VT .

Other basic solutions: b(κ) = X(κ)−1y(κ), each yielding a perfect fit

of k observations.

The desired estimator β̂(θ) can be obtained by searching among those

basic solutions, for which a linear programming algorithm will do.
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Linear Programming

y = Xβ + e can be expressed as

y = X(β+ − β−) + (e+ − e−) = Az,

where A = [X, −X, IT , − IT ] and z =
[
β+′, β−′, e+′, e−′

]′
, with

β+ and β− the positive and negative parts of β, respectively.

Let c = [0′, 0′, θ1′, (1− θ)1′]′. Minimizing VT (β; θ) with respect to

β is equivalent to the following linear program:

min
z

1

T
c′z, s.t. y = Az, z ≥ 0.

C.-M. Kuan (Finance & CREAT, NTU) Intro. to Quantile Regression June 13, 2011 13 / 56



Some Remarks

β̂(θ) is also the QMLE based on an asymmetric Laplace density:

fθ(e) = θ(1− θ) exp[−ρθ(e)].

Due to linear loss function, β̂(θ) is more robust to outliers than the

LS estimator.

The estimated θ th quantile regression hyperplane must interpolate k

observations in the sample. (Why?)

QR is not the same as the regressions based on split samples because

every quantile regression utilizes all sample data (with different

weights). Thus, QR also avoids the sample selection problem arising

from sample splitting.
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QR: Location Shift Model

DGP: yt = x′tβo + εt = β0 + x̃′tβ1 + εt , where εt are i.i.d. with the

common distribution function Fε.

The θ-th quantile function of y is

Qy |x(θ) = β0 + x̃′β1 + F−1ε (θ),

and hence quantile functions differ only by the “intercept” term and

are a vertical displacement of one another.

The model can also be expressed as

yt = [β0 + F−1ε (θ)︸ ︷︷ ︸
β0(θ)

] + x̃′tβ1 + εt,θ,

where Qεθ|x(θ) = 0.
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QR: Location-Scale Shift Model

DGP: yt = x′tβo + (x′tγo)εt , where εt are i.i.d. with the df Fε.

The θ th quantile function of y is

Qy |x(θ) = x′tβo + (x′tγo)F−1ε (θ),

and hence quantile functions differ not only by the “intercept” but

also the “slope” term.

The model can also be expressed as

yt = x′t [βo + γoF−1ε (θ)︸ ︷︷ ︸
β(θ)

] + εt,θ,

where Qεθ|x(θ) = 0.

The QR estimator β̂(θ) converges to β(θ), and x′β̂(θ) approximates

the θ th quantile function of y given x, Qy |x(θ).
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Algebraic Properties: Equivariance

Let β̂(θ) be the QR estimator of the quantile regression of yt on xt .

Scale equivariance: For y∗t = c yt , let β̂
∗
(θ) be the QR estimator of

the quantile regression of y∗t on xt .

For c > 0, β̂
∗
(θ) = c β̂(θ).

For c < 0, β̂
∗
(1− θ) = c β̂(θ).

β̂
∗
(0.5) = c β̂(0.5), regardless of the sign of c .

Shift equivariance: For y∗t = yt + x′tγ, let β̂
∗
(θ) be the QR estimator

of the quantile regression of y∗t on xt . Then, β̂
∗
(θ) = β̂(θ) + γ.

Equivariance to reparameterization of design: Given X∗ = XA for

some nonsingular A, β̂
∗
(θ) = A−1β̂(θ).
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Equivariance to monotonic transformations: For a nondecreasing

function h,

IP{y ≤ a} = IP{h(y) ≤ h(a)},

so that

Qh(y)|x(θ) = h
(
Qy |x(θ)

)
.

Note that the expectation operator does not have this property

because IE[h(y)] 6= h(IE(y)) in general, except when h is linear.

Example: If x′β is the θ th conditional quantile of ln y , then exp(x′β)

is the θ th conditional quantile of y .
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Goodness of Fit

Specification: yt = x1tβ1 + x2tβ2 + et .

A measure of the relative contribution of additional regressors x2t is

1−
VT

(
β̂1(θ), β̂2(θ); θ

)
VT

(
β̃1(θ), 0; θ

) ,

where VT

(
β̃1(θ), 0; θ

)
is computed under the constraint β2 = 0.

A measure of the goodness-of-fit of a specification is thus

R1(θ) = 1−
VT

(
β̂(θ); θ

)
VT

(
q̂(θ), 0; θ

) .
where q̂(θ) is the sample quantile and VT

(
q̂(θ), 0; θ

)
is obtained from

the model with the constant term only. Clearly, 0 < R1(θ) < 1.
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Asymptotic Properties: Heuristics

Ignoring yt = q, the “FOC” of minimizing T−1
∑T

t=1 ρθ(yt − q) is

gT (q) :=
1

T

T∑
t=1

(1{yt<q} − θ).

Clearly, gT (q) is non-decreasing in q (why?), so that q̂(θ) > q iff

gT (q) < 0. Thus,

IP
[√

T (q̂(θ)− q(θ) > c
]

= IP
[
gT
(
q(θ) + c/

√
T
)
< 0
]
.

We have

IE
[
gT

(
q(θ) +

c√
T

)]
= F

(
q(θ) +

c√
T

)
− θ ≈ f (q(θ))

c√
T

var
[
gT

(
q(θ) +

c√
T

)]
=

1

T
F (1− F ) ≈ 1

T
θ(1− θ).
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Setting λ2 = θ(1− θ)/f 2(q(θ)),

IP
[√

T
(
q̂(θ)− q(θ)

)
> c
]

= IP

[
gT
(
q(θ) + c/

√
T
)√

θ(1− θ)/T
< 0

]

= IP

[
gT
(
q(θ) + c/

√
T
)√

θ(1− θ)/T
− c

λ
< − c

λ

]

= IP

[
gT
(
q(θ) + c/

√
T
)
− f (q(θ))c/

√
T√

θ(1− θ)/T
< − c

λ

]
D−→ 1− Φ(c/λ),

by a CLT. This implies

√
T
(
q̂(θ)− q(θ)

) D−→ N (0, λ2).
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GMM Estimation

Given q moment conditions IE[m(wt ;βo)] = 0, βo (k × 1) is exactly

identified if q = k and over-identified if q > k . When βo is exactly

identified, the GMM estimator β̂ of βo solves T−1
∑T

t=1 m(wt ;β) = 0.

Asymptotic Distribution of the GMM Estimator

Given the GMM estimator β̂ of βo ,

√
T (β̂ − βo)

A∼ N
(
0, G−1o ΣoG−1o

)
,

with Σo = IE[m(wt ;βo)m(wt ;βo)′], and

1

T

T∑
t=1

∇βm(wt ;βo)
IP−→ Go := IE[∇βm(wt ;βo)].
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QR Estimator as a GMM Estimator

The QR estimator β̂(θ) satisfies the “asymptotic FOC”:

1√
T

T∑
t=1

ϕθ(yt−x′tβ̂(θ)) :=
1√
T

T∑
t=1

xt
(
θ−1{yt−x′t β̂(θ)<0}

)
= oIP(1).

The (approximate) estimating function is thus

1

T

T∑
t=1

xt
(
θ − 1{yt−x′tβ<0}

)
.

The expectation of the estimating function is

IE
{

xt
[
θ − IE

(
1{yt−x′tβ<0} | xt

)]}
= IE

{
xt
[
θ − Fy |x(x′tβ)

]}
.

When β is evaluated at β(θ), Fy |x(x′tβ) must be θ so that the

moment conditions are IE
[
ϕθ
(
yt − x′tβ(θ)

)]
= 0.
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Asymptotic Distribution

When integration and differentiation can be interchanged,

G(β) = IE
[
∇βϕθ(yt − x′tβ)

]
= ∇β IE

{
xt
[
θ − Fy |x(x′tβ)

]}
= − IE

[
xtx
′
t fy |x(x′tβ)

]
.

Then, G(β(θ)) = − IE
[
xtx
′
t feθ|x(0)

]
.

1{yt−x′tβ(θ)<0} is Bernoulli with mean θ and variance θ(1− θ), so that

Σ(β) = IE

(
xtx
′
t IE
[(
θ − 1{yt−x′tβ<0}

)2 | xt]).
Then, Σ(β(θ)) = θ(1− θ) IE(xtx

′
t) =: θ(1− θ)Mxx .
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Asymptotic Normality of the QR Estimator

√
T
[
β̂(θ)− β(θ)

] D−→ N
(

0, θ(1− θ)G
(
β(θ)

)−1
MxxG

(
β(θ)

)−1)
,

where Mxx = IE(xtx
′
t) and G(β(θ)) = − IE

[
xtx
′
t feθ|x(0)

]
.

Conditional heterogeneity is characterized by the conditional density

feθ|x(0) in G(β(θ)), which is not limited to heteroskedasticity.

If feθ|x(0) = feθ(0), i.e., conditional homogeneity,

√
T
[
β̂(θ)− β(θ)

] D−→ N
(

0,
θ(1− θ)

[feθ(0)]2
M−1xx

)
.

C.-M. Kuan (Finance & CREAT, NTU) Intro. to Quantile Regression June 13, 2011 25 / 56



Estimation of Asymptotic Covariance Matrix

Consistent estimation of D(β(θ)) = G
(
β(θ)

)−1
MxxG

(
β(θ)

)−1
.

Estimation of Mxx : MT = T−1
∑T

t=1 xtx
′
t .

Digression: Differentiating both sides of F (F−1(θ)) = θ:

dF−1(θ)

dθ
=

1

f (F−1(θ))
=: s(θ),

differentiating a quantile function yields a sparsity function.

Estimating the sparsity function:

Using a difference quotient of empirical quantiles F̂−1T (θ):

ŝT (θ) =
[
F̂−1T (θ + hT )− F̂−1T (θ − hT )

]
/(2hT ).

Letting ê(i) be the i th order statistic of QR residuals êt ,

F̂−1T (τ) = ê(i), τ ∈ [(i − 1)/T , i/T ).
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Hendricks and Koenker (1991): Estimating fe(θ)|x(0) in G(β(θ)) by

f̂t =
2hT

x′t
[
β̂(θ + hT )− β̂(θ − hT )

] ,
and estimating −G by −ĜT = 1

T

∑T
t=1 f̂txtx

′
t .

Powell (1991): Estimating −G(β(θ)) by

−ĜT =
1

2TcT

T∑
t=1

1{|êt(θ)|<cT }xtx
′
t ,

where cT → 0 and T 1/2cT →∞ as T →∞.

STATA: Bootstrap
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Standard Wald Test

H0 : Rβ(θ) = r, where R is q × k and r is q × 1.
√

T
[
β̂(θ)− β(θ)

] D−→ N
(
0, θ(1− θ)D(β(θ))

)
.

Under the null,

√
T R
(
β̂(θ)−β(θ)

)
=
√

T
(
Rβ̂(θ)− r

) D−→ N
(
0, θ(1−θ)Γ(β(θ))

)
,

where Γ(β(θ)) = RD(β(θ))R′.

The Null Distribution of the Wald Test

WT (θ) = T
[
Rβ̂(θ)− r

]′
Γ̂(θ)−1

[
Rβ̂(θ)− r

]
/[θ(1− θ)]

D−→ χ2(q),

where Γ̂(θ) = RD̂(θ)R′, with D̂(θ) a consistent estimator of D(β(θ)).
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Sup-Wald Test

H0 : Rβ(θ) = r for all θ ∈ S ⊂ (0, 1).

The Brownian bridge: Bq(θ)
d
= [θ(1− θ)]1/2N (0, Iq), and hence

Γ̂(θ)−1/2
√

T
[
Rβ̂(θ)− r

] D−→ Bq(θ).

Thus, WT (θ)
D−→
∥∥Bq(θ)/

√
θ(1− θ)

∥∥2, uniformly in θ.

The Null Distribution of the Sup-Wald Test

sup
θ∈S
WT (θ)⇒ sup

θ∈S

∥∥∥ Bq(θ)√
θ(1− θ)

∥∥∥2,
where S is a compact set in (0, 1).
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To test Rβ(θ) = r, θ ∈ [a, b], set a = θ1 < . . . < θn = b and compute

sup -WT = sup
i=1,...,n

WT (θi ).

Koenker and Machado (1999): [a, b] = [ε, 1− ε] with ε small.

For s = θ/(1− θ), B(θ)/
√
θ(1− θ)

d
= W (s)/

√
s, so that

IP

 sup
θ∈[a,b]

∥∥∥∥∥ Bq(θ)√
θ(1− θ)

∥∥∥∥∥
2

< c

 = IP

{
sup

s∈[1,s2/s1]

∥∥∥∥Wq(s)
√

s

∥∥∥∥2 < c

}
,

with s1 = a/(1− a), s2 = b/(1− b).

Some critical values were tabulated in DeLong (1981) and

Andrews (1993); the other can be obtained via simulations.
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Likelihood Ratio Tests

Let β̂(θ) and β̃(θ) be the constrained and unconstrained estimators

and V̂T (θ) = VT (β̂(θ); θ) and ṼT (θ) = VT (β̃(θ); θ) be the

corresponding objective functions.

Given the asymmetric Laplace density: fθ(u) = θ(1− θ) exp[−ρθ(u)],

the log-likelihood is

LT (β; θ) = T log(θ(1− θ))−
T∑
t=1

ρθ(yt − x′tβ).

−2 times the log-likelihood ratio is

2
[
LT (β̂(θ); θ)− LT (β̃(θ); θ)

]
= 2
[
ṼT (θ)− V̂T (θ)

]
.
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Koenker and Machado (1999):

LRT (θ) =
2
[
ṼT (θ)− V̂T (θ)

]
θ(1− θ)[feθ(0)]−1

D−→ χ2(q).

This test is also known as the quantile ρ test.

Koenker and Bassett (1982): For median regression,

LRT (0.5) =
8
[
ṼT (0.5)− V̂T (0.5)

]
[fe0.5(0)]−1

= 2
[
ṼT (0.5)− V̂T (0.5)

]
,

because fe0.5(0) = 1/4.
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Average Treatment Effect (ATE)

Evaluating the impact of a treatment (program, policy, intervention).

Let D be the binary indicator of treatment and X be covariates.

Y1 (Y0) is the potential outcome when an agent is (is not) exposed to

the treatment.

The observed outcome is Y = DY1 + (1− D)Y0.

We observe only one potential outcome (Y1i or Y0i ) and hence can

not identify the individual treatment effect, Y1i − Y0i . We may

estimate the ATE: IE(Y1 − Y0).

Under conditional independence: (Y1,Y0)⊥D | X ,

IE(Y |D = 1,X )− IE(Y |D = 0,X ) = IE(Y1 − Y0|X ),

so that the ATE is IE(Y1 − Y0) = IE[IE(Y1 − Y0|X )].
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Using the sample counterpart of IE(Y |D = 1,X )− IE(Y |D = 0,X )

we have

ÂTE =
1

N

N∑
i=1|

[
µ̂1(Xi )− µ̂0(Xi )

]
.

For the dummy-variable regression:

Yi = α + Diγ + X ′i β︸ ︷︷ ︸
µD

+ei , i = 1, . . . , n,

the LS estimate of γ is ÂTE.

Other estimators: Kernel matching, nearest neighbor matching,

propensity score matching (based on p(x) = IP(D = 1|X = x)), etc.
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Quantile Treatment Effect (QTE)

Let F0 and F1 be, resp., the distributions of control and treatment

responses. Let ∆(η) be the “horizontal shift” from F0 to F1:

F0(η) = F1(η + ∆(η)).

Then, ∆(η) = F−11 (F0(η))− η, and the θ th QTE is, for F0(η) = θ,

QTE(θ) = F−11 (θ)− F−10 (θ) = qY1
(θ)− qY0

(θ),

the difference between the quantiles of two distributions.

We may apply the QR method to

Yi = α + Diγ + X ′i β + ei ,

the resulting QR estimate γ̂(θ) is the estimated θ th QTE.

Other: A weighting estimator based on the propensity score.
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Difference in Differences

The impact of a program (policy) may be observed after certain

period of time. To identify the “true” treatment effect, the potential

change due to time (other factors) must be excluded first.

Define the following dummy variables:

(i) Di ,τ = 1 if the i th individual receives the treatment;

(ii) Di ,a = 1 if the i th individual s in the post-program period;

(iii) Di ,aτ = Di ,τ × Di ,a.

Model: Yi = α + α1Di ,τ + α2Di ,a + α3Di ,aτ + X ′i β + ei .

For the treatment group in pre- and post-program periods, the time

effect is α2 + α3.

For the control group in pre- and post-program periods, the time effect

is α2.

The treatment effect is the difference between these two effects: α3.
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Empirical Study: Return-Volume Relations

Granger non-causality is defined in terms of distribution.

Existing tests focus on its implications:

Non-causality in mean (linear model): Granger (1969, 1980).

Non-causality in variance: Granger et al. (1986), Cheung and

Ng (1996).

Nonlinear causality: Hiemstra and Jones (1994).

Non-causality in some quantiles: Lee and Yang (2006), Hong et

al. (2006).

Empirical studies on return-volume relations are typically based on

least-squares regressions and find that volume does not Granger cause

return.
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Notions of Granger Non-Causality

x does not Granger cause y in distribution if

Fyt (η|(Y,X )t−1) = Fyt (η|Yt−1), ∀η ∈ R.

x does not Granger cause y in mean if

IE[yt |(Y,X )t−1] = IE(yt |Yt−1).

x does not Granger cause y in all quantiles if

Qyt (τ
∣∣(Y,X )t−1) = Qyt (τ

∣∣Yt−1), ∀τ ∈ [0, 1];

cf. Lee and Yang (2006), Hong et al. (2006).
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Causal Relations between Return and Volume

Chuang, Kuan, and Lin (2009, JBF):

2 stock market indices: NYSE and S&P 500, from Jan 1990 to June

30, 2006 with 4135 and 4161 obs.

Model:

rt = a(τ)+b(τ)
t

T
+c(τ)

( t

T

)2
+

q∑
j=1

αj(τ)rt−j+

q∑
j=1

βj(τ) ln vt−j+et ,

where βj(τ) represents the quantile causal effect of ln vt−j on rt , cf.

Gallant, Rossi, and Tauchen (1992).

Null hypothesis: βj(τ) = 0 for all τ in (0, 1), i.e., Granger

non-causality in quantiles. A sup-Wald test will do.
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Figure: QR and LS estimates of the causal effects of log volume on return.
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A Summary

There is no causality in mean, but there are significant and

heterogeneous causal effects of volume on return quantiles.

Causal effects have opposite signs at the two sides of dist.

Causal effects are stronger at more extreme quantiles.

The pairwise causal effects are symmetric about the median.

With log volume (return) on the vertical (horizontal) axis, causal

relations exhibit symmetric V shapes across quantiles, cf.

Karpoff (1987), Gallant et al. (1992), and Blume et al. (1994). This

implies that return dispersion (volatility) increases with volume.

These results remain valid when the model includes r2t−j , and they are

robust in different sample periods.
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Figure: QR and LS estimates of the causal effects of log volume on return:

1995–2006.
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Figure: QR and LS estimates of the causal effects of log volume on return:

2000–2006.
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Empirical Study: Effects of NHI on Saving

There were 3 major health insurance programs in Taiwan: Labor

Insurance (1950), Government Employees’ Insurance (1958), and

Farmers’ Health Insurance (1985).

Government Employees’ Insurance (GEI): Covers the employees

(including retirees) in the public sector; the coverage was extended to

spouses in 1982, to parents in 1989, and to children in 1992.

Labor Insurance: Covers only the employees in the private sector whose

ages are 15–60, but not their spouse, parents, and children.

The NHI launched in 1995 covers every citizen in Taiwan without

discrimination, and its coverage is the same as that of GEI.

We want to examine the effect of the enforcement of NHI on the

precautionary saving in Taiwan.
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Data from the SFIE

The data are taken from the Survey of Family Income and

Expenditure (SFIE). This nation-wide survey is not panel and uses

new sampling every year.

The sample size is about 16,000 each year in the early 90’s and drops

to about 14,000 from the mid-90’s.

The modules in the SFIE include individual socio-demographic and

socio-economic characteristics along with income and outlays of each

income earner within the household.

The SFIE provides details on each household member’s income

sources and job attributes that are crucial for estimation of

permanent income and identification of treatment/control groups.
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We employ 10 waves of SFIE from 1990 through 2000 (excluding

1995), with 1990–1994 and 1996–2000 as the periods before and

after the enforcement of NHI.

Our sample includes only the households with non-farm heads aged

20-69 years.

There are 68,738 and 58,355 observations for the periods 1990–1994

and 1996–2000, respectively.

While the average household real income increases moderately from

NTD 0.97 million during 1990–1994 to more than NTD 1.2 million

during 1996–2000, the corresponding average saving rates decrease by

50%, from 0.23 during 1990–1994 to 0.12 during 1996–2000.
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Treatment and Control Groups

Groups are partitioned according to the working status of household head

and his/her spouse.

1 Case 1:

Control: At least one of head and spouse in the public sector;

Treatment: Neither head nor spouse in the public sector.

2 Case 2:

Strict control: Head and spouse in the public sector;

Quasi control: One of head and spouse in the public sector;

Treatment 1: Head and spouse in the private sector;

Treatment 2: One of head and spouse in the private sector.
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Unconditional Group Means and ATE

1990–1994 1996–2000

Sample Obs. Mean S.D. Obs. Mean S.D. Difference DID

Full Sample 68, 738 0.229 0.282 58, 355 0.114 0.244 −0.115 (0.001)

Control 13, 589 0.281 0.220 9, 520 0.195 0.215 −0.085 (0.003)

Treatment 55, 149 0.216 0.294 48, 835 0.098 0.246 −0.118 (0.002) −0.033 (0.003)

Strict Control 2, 476 0.341 0.195 1, 717 0.263 0.200 −0.078 (0.006)

Quasi Control 11, 113 0.267 0.223 7, 803 0.180 0.215 −0.087 (0.003) −0.009 (0.007)

Treatment 1 24, 545 0.227 0.228 22, 279 0.107 0.220 −0.120 (0.002) −0.043 (0.007)

Treatment 2 30, 600 0.208 0.338 26, 556 0.091 0.265 −0.117 (0.003) −0.041 (0.007)
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Comparison with Chou, Liu, & Hammitt (2003)

1 Data:

CLH03 include 1995 but we do not.

CLH03 exclude the sample with negative saving but we do not. Note

that such sample was 11.8% in 1990–1994 but jumped to 27.2% in

1996–2000, leading to an average of 18.9% of the entire sample.

2 Dependent variable: CLH03 uses ln(Y − C ), but we approximate the

saving rate by ln Y − ln C .

3 Covariates: We partition some covariates (income and head age) into

groups and study the groupwise ATE and QTEs.

4 Model: CLH03 make pairwise comparisons, but we estimate a model

with multiple treatment groups.
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Empirical Models

1 Control vs. one treatment group:

Si = α + X ′i β + Diγ + (NHIi )δ + [(NHIi )× Di ]ζ + ei .

2 Control vs. multiple treatment groups:

Si = α + X ′i β +
2∑

j=0

Di (j)γj + (NHIi )δ

+
2∑

j=0

[(NHIi )× Di (j)]ζj + ei .

where D(j) are the indicators of the j-th treatment group (j = 0 for

quasi-control group, j = 1 and 2 for treatment 1 and 2 groups).
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1 To explore possible heterogeneity of the treatment effects, we

partition the data into 5 permanent income groups (based on income

quintiles) and 5 age groups (20–29,. . . , 60–69). We estimate the

following model:

Si = α + X ′i β +
5∑

j=1

DiKi (j)γj +
5∑

j=1

(NHIi × Ki (j))δj

+
5∑

j=1

[(NHIi )× Di × Ki (j)]ζj + ei ,

where D is the binary indicator of the treatment group, and K (j),

j = 1, . . . , 5, are the indicators of 5 income groups or 5 age groups.
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Empirical Result 1
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Figure: DID estimates of the ATE and QTE: 1 treatment group.
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Empirical Result 2
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Figure: DID estimates of the ATE and QTE: Quasi control (left), treatment 1

(middle), and treatment 2 (right).
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Empirical Result 3
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Figure: DID estimates of the ATE and QTE: 5 income groups (left) and 5 age

groups (right).
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A Summary

The NHI has significantly negative (crowd-out) effect on

precautionary saving, and such impact (QTE) is stronger for higher

savers (magnitude increasing with saving quantile).

The estimated conditional ATEs are quite close to the unconditional

ATEs. For example, for the treatment 1 and treatment 2 groups, the

estimated ATEs are −4.3% and −3.5% (vs. unconditional ATEs:

−4.3% and −4.1%). For the quasi control group, the ATE is

insignificant.

The QTE patterns for treatment 1 and 2 groups are opposite to those

of CLH03.

The negative impact is the largest for the highest income group and

the oldest (age 60–69) group, cf. CLH04.
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