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Introduction

Inference about a statistic should be based on its exact distribution.

The exact distribution is typically unknown.

Asymptotic distribution (based on first-order asymptotics) is usually

easier to obtain under mild conditions and provides a reasonably good

approximation to the exact distribution.

Efron (1979): Bootstrap yields an alternative approximation to the

exact distribution based on re-sampling of the data.

The approximation is usually more accurate than that of the first-order

asymptotics.

It is computationally demanding.

The results and discussion here are taken freely from Horowitz (2001,

Handbook of Econometrics, Chap. 52).
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Notations

Xn = {X1,X2, ...,Xn}, where Xi are i.i.d. with the distribution

function (df) F.

R(Xn) is a statistic based on Xn with the exact df Hn(·,F):

Hn(a,F) = PF

[
R(Xn) ≤ a

]
.

R(Xn) is a pivot if Hn(·,F) are identical for all F ∈ F .

R(Xn) is an asymptotic pivot if its limiting df,

HA(a,F) := lim
n→∞

Hn(a,F),

does not depend on F.

It is common to approximate Hn(a,F) by its limiting df HA(a,F).
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Exact Confidence interval

Given Xi i.i.d. N (µ, σ2), consider

R(Xn) =
µ̂(Xn)− µ√

σ̂2(Xn)
n

∼ t(n − 1),

where µ̂(Xn) =
∑n

i=1 Xi/n, σ̂2(Xn) =
∑n

i=1

(
Xi − µ̂(Xn)

)2
/(n − 1).

As long as F is normal, R(Xn) is a pivot.

The exact confidence interval of µ with the confidence coefficient α is(
µ̂(xn) + tn−1, 1−α

2

σ̂(xn)√
n
, µ̂(xn) + tn−1, 1+α

2

σ̂(xn)√
n

)
,

where tn−1, 1+α
2

is the (1 + α)/2-th quantile of t(n − 1).
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Asymptotic Confidence interval

If Xi are i.i.d. with finite second moment (but not necessarily normally

distributed), a CLT yields

R(Xn)
D−→ N (0, 1).

R(Xn) is an asymptotic pivot because its limiting normal distribution

does not depend on F (as long F has finite second moment).

An approximate confidence interval of µ with the confidence

coefficient α is(
µ̂(xn) + q 1−α

2

σ̂(xn)√
n
, µ̂(xn) + q 1+α

2

σ̂(xn)√
n

)
,

where q 1+α
2

is the (1 + α)/2-th quantile of N (0, 1).
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Basic Idea of Bootstrap

Bootstrap approximates Hn(·,F) using Hn(·, F̂n), where F̂n is an

estimate of F.

Estimates of F:

Parametric: Suppose F is determined by the parameters m ∈M ⊆ Rk ,

so that F = {F(·,m)|m ∈M}. Then,

F̂n(a) = F(a, m̂(xn))

Nonparametric: Empirical distribution function of Xi is

F̂n(a) =
1

n

n∑
i=1

1(xi ≤ a) =
1

n
]{xi ≤ a, i = 1, . . . , n},

where 1(A) is the indicator function of the event A.
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Example 3.1: Parametric Bootstrap

Xi are i.i.d. N (µ, σ2). Suppose the normality is known but not µ and

σ2 which can be estimated by µ̂(Xn) and σ̂2(Xn).

Consider the distribution N (µ̂(Xn), σ̂2(Xn)), from which we can

randomly draw X∗n = {X ∗1 ,X ∗2 , ...,X ∗n }. Then, X ∗i are i.i.d. with

F∗(a) := F̂n(a) = Φ
(
(a− µ̂(xn))/σ̂(xn)

)
.

As R is a pivot, R(Xn) ∼ t(n − 1) and

R(X∗n) :=
µ̂∗(X∗n)− µ̂(xn)√

σ̂2
∗(X
∗
n )

n

∼ t(n − 1).

This shows that Hn(·,F∗) agrees with Hn(·,F).
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As Hn(·,F∗) agrees with Hn(·,F),

PF

[
tn−1, 1−α

2
< R(Xn) < tn−1, 1+α

2

]
= PF∗

[
tn−1, 1−α

2
< R(Xn) < tn−1, 1+α

2

]
= α.

The bootstrapped CI is exact and reads(
µ̂(xn) + t 1−α

2

σ̂(xn)√
n
, µ̂(xn) + t 1+α

2

σ̂(xn)√
n

)
.
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Example 3.2: Parametric Bootstrap

Consider the statistic R(Xn) =
√
n(µ̂(Xn)− µ), where Xi are as in

Example 3.1. Then, R(Xn) ∼ Hn(a,F) = Φ(a/σ).

Consider the distribution N (µ̂(Xn), σ̂2(Xn)), from which we can

randomly draw X∗n with

F∗(a) = Φ
(
(a− µ̂(xn))/σ̂(xn)

)
.

Then, R(X∗n) :=
√
n
(
µ̂∗(X∗n)− µ̂(xn)

)
∼ Hn(·,F∗) = Φ

(
a/σ̂(xn)

)
.

PF

[
q 1−α

2
σ < R(Xn) < q 1+α

2
σ
]

= α can be approximated by

PF∗

[
q 1−α

2
σ̂(xn) < R(Xn) < q 1+α

2
σ̂(xn)

]
.

C.-M. Kuan (Finance, National Taiwan U.) LECTURE ON BOOTSTRAP April 18, 2011 10 / 23



The approximated confidence interval of µ is thus(
µ̂(xn) + q 1−α

2

σ̂(xn)√
n
, µ̂(xn) + q 1+α

2

σ̂(xn)√
n

)
.

If the MLE σ̌2(xn) =
∑n

i=1

(
xi − µ̂(xn)

)2
/n is used, we have

F∗(a) = Φ
(
(a− µ̂(xn))/σ̌(xn)

)
.

The approximated confidence interval of µ is(
µ̂(xn) + q 1−α

2

σ̌(xn)√
n
, µ̂(xn) + q 1+α

2

σ̌(xn)√
n

)
.

Note: The parametric bootstrap method depends on the choice of R(Xn)

as well as the estimator of parameters.
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Example 3.3: Non-Parametric Bootstrap

X ∗i are i.i.d. with the df F∗ = F̂n, the empirical distribution function.

Calculate R(X∗n) over nn different combinations of {x∗i }ni=1, so that

Hn(a,F∗) =
1

nn
]
{
R(x∗n) ≤ a, for all xn

}
.

Letting p∗s denote the s-th quantile of Hn(·,F∗), we have

PF∗

[
p∗1−α

2

< R(Xn) < p∗1+α
2

]
.

The approximated confidence interval of µ is(
µ̂(xn) + p∗1−α

2

σ̂(xn)√
n
, µ̂(xn) + p∗1−α

2

σ̂(xn)√
n

)
.
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Asymptotic Results

Definition: Consistency

Hn(·, F̂n) is said to be consistent for HA(·,F) if for every ε > 0 and F ∈ F ,

lim
n→∞

PF

[
sup
a
|Hn(a, F̂n)− HA(a,F)| > ε

]
= 0.

The following conditions are due to Beran and Ducharme (1991):

(i) For every ε > 0 and F ∈ F , F̂n is such that

limn→∞ PF

[
supa |F̂n(a)− F(a)| > ε

]
= 0.

(ii) For each F ∈ F , HA(·,F) is a continuous function.

(iii) For every a and any sequence {Gn} ∈ F such that

limn→∞Gn(a) = F(a), we have limn→∞Hn(a,Gn) = HA(a,F).
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Polya’s Theorem: If Xn
D−→ X and FX is continuous, then

lim
n→∞

sup
a
|FXn

(a)− FX (a)| = 0.

By Polya’s Theorem, conditions (ii) and (iii) imply

lim
n→∞

sup
a
|Hn(a,Gn)− HA(a,F)| = 0.

For F̂n satisfying condition (i), we have with probability approaching

one, F̂n(a) is close to F (a) uniformly in a. This, together with the

result above, leads to

lim
n→∞

PF

[
sup
a
|Hn(a, F̂n)− HA(a,F)| > ε

]
= 0.

That is, Hn(·, F̂n) is consistent for HA(·,F):
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When R(Xn)
D−→ RA(F) and HA(·,F) is continuous, Polya’s theorem

again ensures the convergence of Hn(a,F) to HA(a,F) is uniform.

This shows that the bootstrap distribution Hn(a, F̂n) is capable of

approximating the exact distribution Hn(a,F), in the sense that

lim
n→∞

PF

[
sup
a
|Hn(a, F̂n)− Hn(a,F)| > ε

]
= 0.
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Bootstrap with Re-Sampling

Nonparametric bootstrap is computationally burdensome (for n = 10, it

requires 1010 values). This may be greatly simplified by re-sampling.

Randomly draw n observation from {x1, x2, ..., xn} with replacement:

x∗n,b = (x∗1,b, x
∗
2,b, ..., x

∗
n,b), for b = 1, 2, ...,B.

Empirical distribution function of R(x∗n) is

H̃n,B(a,F∗) =
1

B
]
{
R(x∗n,b) ≤ a, b = 1, . . . ,B

}
,

and by the Glivenko-Cantelli theorem,

lim
B→∞

sup
a
|H̃n,B(a,F∗)− Hn(a,F∗)| = 0, a.s.

H̃n,B(·,F∗) approximates Hn(·,F∗) when B is large, and Hn(·,F∗) in

turn approximates Hn(·,F) when n is large.
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Example 5.1

Table: The coverage rates of the bootstrap and asymptotic methods.

n = 10 n = 20 n = 50 n = 100

F Boot Asymp Boot Asymp Boot Asymp Boot Asymp

eN (0,1) 0.9074 0.8060 0.9192 0.8498 0.9280 0.8910 0.9346 0.9162

t(5) 0.9396 0.9256 0.9338 0.9296 0.9434 0.9490 0.9408 0.9454

t(8) 0.9430 0.9168 0.9458 0.9414 0.9470 0.9478 0.9460 0.9494

t(11) 0.9436 0.9194 0.9460 0.9368 0.9494 0.9478 0.9506 0.9498
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Example 5.2

Given yi = α + βxi + εi , regress yi on 1 and xi and calculate the OLS

estimates α̂ and β̂ and their estimated standard deviations σ̂α̂ and σ̂β̂.

The i.i.d. bootstrap is

I1. Generate random indices from a uniform distribution over {1, .., n}
with replacement, denoted as {kb1 , ..., kbn }.

I2. Regress {ykb
1
, ..., ykb

n
} on a constant term and {xkb

1
, ..., xkb

n
} to obtain

β̂∗b and the estimated standard deviation σ̂β̂∗b
. Compute the

Studentized statistic: R̂∗b := (β̂∗b − β̂)/σ̂β̂∗b
.

I3. Repeat the steps (i) and (ii) for b = 1, ...,B and rank the absolute

value of R̂∗b in an ascending order: {R̂∗r1 , ..., R̂
∗
rB
}.
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Example 5.2 (Continued)

1 The bootstrapped 95% CI based on σ̂β̂ is:

CIBM,1 =
(
β̂ − p∗0.95 σ̂β̂, β̂ + p∗0.95 σ̂β̂

)
,

where p∗0.95 is the 0.95 quantile of {R̂∗r1 , ..., R̂
∗
rB
}.

2 An alternative CI is

CIBM,2 =
(
β̂ − p∗0.95 ŝβ̂∗ , β̂ + p∗0.95 ŝβ̂∗

)
,

where ŝ2
β̂∗

= 1
B

∑B
b=1

(
β̂∗b − β̂∗

)2
, and β̂∗ =

∑B
b=1 β̂

∗
b/B.

3 The CI based on non-Studentized statistic (β̂∗b − β̂) is

CIBM,3 =
(
β̂ − p̃∗0.95, β̂ + p̃∗0.95

)
,

where p̃∗0.95 is the 0.95-th quantile of (β̂∗b − β̂).
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Table: The coverage rates of β in simple linear regression.

n = 10 n = 20 n = 50 n = 100

Fx/Fε Boot Asymp Boot Asymp Boot Asymp Boot Asymp

N (0, 1)/t(5) 0.918 0.911 0.937 0.925 0.942 0.932 0.945 0.945

N (0, 1)2/t(3) 0.917 0.912 0.927 0.906 0.919 0.931 0.934 0.939

eN (0,5)/N (0, 1) 0.932 0.922 0.938 0.934 0.901 0.956 0.910 0.951
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Stationary Bootstrap

Stationary bootstrap of Politis and Romano (1994):

It is applicable to stationary and weakly dependent data.

Observations are re-sampled in blocks so as to capture the dependence

in data.

Each block has a random size determined by the geometric distribution

with parameter Q.

Given xn and 0 < Q < 1, the procedure is:

S1. Randomly select an observation, say xt , from the data xn as the first

bootstrapped observation x∗1,b.

S2. With prob Q, x∗2,b is set to xt+1, the obs following the previously

sampled obs, and with prob 1−Q, the second bootstrapped obs x∗2,b is

randomly selected from the original data xn.

S3. Repeat the second step to form x∗n,b, the b-th bootstrapped sample

with n observations.
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Goncalves and de Jong (2003)

Suppose that Q(n)→ 1 and n(1− Q(n))2 →∞. Then for any ε > 0,

P
[

sup
a∈R

∣∣P∗[√n(X̄ ∗n − X̄n) ≤ a]− P[
√
n(X̄n − µ) ≤ a]

∣∣ > ε
]
→ 0,

where µ = E(Xt) and P∗ is the probability measure generated by

stationary bootstrap.

Expected block size: 1/(1− Q)

Stationary bootstrap is close to i.i.d. bootstrap when Q → 0.

The larger the expected block size (the larger the Q), the better can

such re-sampling preserve the dependence in data. But when the

expected block size is too big, the bootstrapped samples would have

smaller variation and hence result in poor approximation.
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Example 6.1

Xt = ρXt−1 + εt , with |ρ| < 1 and εt ∼ N (0, 1).

Simulating the coverage rates of 95% confidence intervals of the

mean of Xt ; B = 1000 and R = 5000.

Table: The coverage rates of the stationary bootstrap method.

ρ Q=0 0.5 0.7 0.9 0.95

0 0.9514 0.9414 0.9466 0.9284 0.8982

0.3 0.8494 0.8944 0.9178 0.9150 0.8822

0.6 0.6726 0.8100 0.8502 0.8690 0.8822

0.9 0.3460 0.5314 0.6214 0.7562 0.7742
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