LECTURE ON BOOTSTRAP

CHUNG-MING KUAN

Department of Finance

National Taiwan University

April 18, 2011

Outline

Introduction

Basic Idea of Bootstrap

- Confidence Intervals
- Basic Idea
- Examples

3 Asymptotic Results

4 Bootstrap with Re-Sampling

- Re-Sampling
- Examples

Stationary Bootstrap

Introduction

- Inference about a statistic should be based on its exact distribution.
 - The exact distribution is typically unknown.
 - Asymptotic distribution (based on first-order asymptotics) is usually easier to obtain under mild conditions and provides a reasonably good approximation to the exact distribution.
- Efron (1979): Bootstrap yields an alternative approximation to the exact distribution based on re-sampling of the data.
 - The approximation is usually more accurate than that of the first-order asymptotics.
 - It is computationally demanding.
- The results and discussion here are taken freely from Horowitz (2001, *Handbook of Econometrics*, Chap. 52).

Notations

- $\mathbf{X}_n = \{X_1, X_2, ..., X_n\}$, where X_i are i.i.d. with the distribution function (df) **F**.
- $R(\mathbf{X}_n)$ is a statistic based on \mathbf{X}_n with the exact df $H_n(\cdot, \mathbf{F})$:

 $H_n(a,\mathbf{F}) = P_{\mathbf{F}}[R(\mathbf{X}_n) \leq a].$

- $R(\mathbf{X}_n)$ is a pivot if $H_n(\cdot, \mathbf{F})$ are identical for all $\mathbf{F} \in \mathcal{F}$.
- $R(\mathbf{X}_n)$ is an asymptotic pivot if its limiting df,

$$H_A(a,\mathbf{F}) := \lim_{n \to \infty} H_n(a,\mathbf{F}),$$

does not depend on **F**.

• It is common to approximate $H_n(a, \mathbf{F})$ by its limiting df $H_A(a, \mathbf{F})$.

Exact Confidence interval

• Given
$$X_i$$
 i.i.d. $\mathcal{N}(\mu, \sigma^2)$, consider

$$R(\mathbf{X}_n) = \frac{\hat{\mu}(\mathbf{X}_n) - \mu}{\sqrt{\frac{\hat{\sigma}^2(\mathbf{X}_n)}{n}}} \sim t(n-1),$$

where $\hat{\mu}(\mathbf{X}_n) = \sum_{i=1}^n X_i/n$, $\hat{\sigma}^2(\mathbf{X}_n) = \sum_{i=1}^n (X_i - \hat{\mu}(\mathbf{X}_n))^2/(n-1)$. As long as **F** is normal, $R(\mathbf{X}_n)$ is a pivot.

 $\bullet\,$ The exact confidence interval of μ with the confidence coefficient α is

$$\left(\hat{\mu}(\mathbf{x}_n)+t_{n-1,\frac{1-\alpha}{2}}\frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}},\ \hat{\mu}(\mathbf{x}_n)+t_{n-1,\frac{1+\alpha}{2}}\frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}\right),$$

where $t_{n-1,\frac{1+\alpha}{2}}$ is the $(1+\alpha)/2$ -th quantile of t(n-1).

Asymptotic Confidence interval

• If X_i are i.i.d. with finite second moment (but not necessarily normally distributed), a CLT yields

 $R(\mathbf{X}_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1).$

 $R(\mathbf{X}_n)$ is an asymptotic pivot because its limiting normal distribution does not depend on **F** (as long **F** has finite second moment).

• An approximate confidence interval of μ with the confidence coefficient α is

$$\left(\hat{\mu}(\mathbf{x}_n)+q_{\frac{1-\alpha}{2}}\frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}, \ \hat{\mu}(\mathbf{x}_n)+q_{\frac{1+\alpha}{2}}\frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}\right),$$

where $q_{rac{1+lpha}{2}}$ is the (1+lpha)/2-th quantile of $\mathcal{N}(0,1).$

Basic Idea of Bootstrap

- Bootstrap approximates $H_n(\cdot, \mathbf{F})$ using $H_n(\cdot, \widehat{\mathbf{F}}_n)$, where $\widehat{\mathbf{F}}_n$ is an estimate of \mathbf{F} .
- Estimates of F:
 - Parametric: Suppose **F** is determined by the parameters $\mathbf{m} \in \mathbb{M} \subseteq \mathbb{R}^k$, so that $\mathcal{F} = {\mathbf{F}(\cdot, \mathbf{m}) | \mathbf{m} \in \mathbb{M}}$. Then,

$$\widehat{\mathbf{F}}_n(a) = \mathbf{F}(a, \widehat{\mathbf{m}}(\mathbf{x}_n))$$

• Nonparametric: Empirical distribution function of X_i is

$$\widehat{\mathsf{F}}_n(a) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(x_i \leq a) = \frac{1}{n} \sharp \{x_i \leq a, i = 1, \dots, n\},\$$

where $\mathbf{1}(A)$ is the indicator function of the event A.

Example 3.1: Parametric Bootstrap

- X_i are i.i.d. $\mathcal{N}(\mu, \sigma^2)$. Suppose the normality is known but not μ and σ^2 which can be estimated by $\hat{\mu}(\mathbf{X}_n)$ and $\hat{\sigma}^2(\mathbf{X}_n)$.
- Consider the distribution $\mathcal{N}(\hat{\mu}(\mathbf{X}_n), \hat{\sigma}^2(\mathbf{X}_n))$, from which we can randomly draw $\mathbf{X}_n^* = \{X_1^*, X_2^*, ..., X_n^*\}$. Then, X_i^* are i.i.d. with

$$\mathbf{F}^*(a) := \widehat{\mathbf{F}}_n(a) = \Phi((a - \hat{\mu}(\mathbf{x}_n)) / \hat{\sigma}(\mathbf{x}_n)).$$

• As R is a pivot, $R(\mathbf{X}_n) \sim t(n-1)$ and

$$R(\mathbf{X}_n^*) := \frac{\hat{\mu}^*(\mathbf{X}_n^*) - \hat{\mu}(\mathbf{x}_n)}{\sqrt{\frac{\hat{\sigma}^2_*(\mathbf{X}_n^*)}{n}}} \sim t(n-1).$$

This shows that $H_n(\cdot, \mathbf{F}^*)$ agrees with $H_n(\cdot, \mathbf{F})$.

• As $H_n(\cdot, \mathbf{F}^*)$ agrees with $H_n(\cdot, \mathbf{F})$,

$$\mathbb{P}_{\mathbf{F}}\left[t_{n-1,\frac{1-\alpha}{2}} < R(\mathbf{X}_n) < t_{n-1,\frac{1+\alpha}{2}}\right]$$
$$= \mathbb{P}_{\mathbf{F}^*}\left[t_{n-1,\frac{1-\alpha}{2}} < R(\mathbf{X}_n) < t_{n-1,\frac{1+\alpha}{2}}\right] = \alpha.$$

• The bootstrapped CI is exact and reads

$$\left(\hat{\mu}(\mathbf{x}_n) + t_{\frac{1-\alpha}{2}} \frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}, \ \hat{\mu}(\mathbf{x}_n) + t_{\frac{1+\alpha}{2}} \frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}\right).$$

Example 3.2: Parametric Bootstrap

- Consider the statistic $R(\mathbf{X}_n) = \sqrt{n}(\hat{\mu}(\mathbf{X}_n) \mu)$, where X_i are as in Example 3.1. Then, $R(\mathbf{X}_n) \sim H_n(a, \mathbf{F}) = \Phi(a/\sigma)$.
- Consider the distribution $\mathcal{N}(\hat{\mu}(\mathbf{X}_n), \hat{\sigma}^2(\mathbf{X}_n))$, from which we can randomly draw \mathbf{X}_n^* with

$$\mathbf{F}^{*}(\mathbf{a}) = \Phi((\mathbf{a} - \hat{\mu}(\mathbf{x}_{n}))/\hat{\sigma}(\mathbf{x}_{n})).$$

Then, $R(\mathbf{X}_{n}^{*}) := \sqrt{n}(\hat{\mu}^{*}(\mathbf{X}_{n}^{*}) - \hat{\mu}(\mathbf{x}_{n})) \sim H_{n}(\cdot, \mathbf{F}^{*}) = \Phi(a/\hat{\sigma}(\mathbf{x}_{n})).$
• $\mathbb{P}_{\mathbf{F}}\left[q_{\frac{1-\alpha}{2}}\sigma < R(\mathbf{X}_{n}) < q_{\frac{1+\alpha}{2}}\sigma\right] = \alpha$ can be approximated by
 $\mathbb{P}_{\mathbf{F}^{*}}\left[q_{\frac{1-\alpha}{2}}\hat{\sigma}(\mathbf{x}_{n}) < R(\mathbf{X}_{n}) < q_{\frac{1+\alpha}{2}}\hat{\sigma}(\mathbf{x}_{n})\right].$

• The approximated confidence interval of μ is thus

$$\left(\hat{\mu}(\mathbf{x}_n)+q_{\frac{1-\alpha}{2}}\frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}},\ \hat{\mu}(\mathbf{x}_n)+q_{\frac{1+\alpha}{2}}\frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}\right).$$

• If the MLE $\check{\sigma}^2(\mathbf{x}_n) = \sum_{i=1}^n (x_i - \hat{\mu}(\mathbf{x}_n))^2 / n$ is used, we have

$$\mathbf{F}^*(\mathbf{a}) = \Phi\big((\mathbf{a} - \hat{\mu}(\mathbf{x}_n)) / \check{\sigma}(\mathbf{x}_n)\big).$$

• The approximated confidence interval of μ is

$$\left(\hat{\mu}(\mathbf{x}_n)+q_{\frac{1-\alpha}{2}}\frac{\check{\sigma}(\mathbf{x}_n)}{\sqrt{n}},\ \hat{\mu}(\mathbf{x}_n)+q_{\frac{1+\alpha}{2}}\frac{\check{\sigma}(\mathbf{x}_n)}{\sqrt{n}}\right).$$

Note: The parametric bootstrap method depends on the choice of $R(\mathbf{X}_n)$ as well as the estimator of parameters.

Example 3.3: Non-Parametric Bootstrap

- X_i^* are i.i.d. with the df $\mathbf{F}^* = \widehat{\mathbf{F}}_n$, the empirical distribution function.
- Calculate $R(\mathbf{X}_n^*)$ over n^n different combinations of $\{x_i^*\}_{i=1}^n$, so that

$$H_n(a, \mathbf{F}^*) = \frac{1}{n^n} \sharp \big\{ R(\mathbf{x}_n^*) \le a, \text{ for all } \mathbf{x}_n \big\}.$$

• Letting p_s^* denote the *s*-th quantile of $H_n(\cdot, \mathbf{F}^*)$, we have

$$\mathbb{P}_{\mathbf{F}^*}\left[\rho_{\frac{1-\alpha}{2}}^* < R(\mathbf{X}_n) < \rho_{\frac{1+\alpha}{2}}^*\right].$$

The approximated confidence interval of $\boldsymbol{\mu}$ is

$$\left(\hat{\mu}(\mathbf{x}_n) + p_{\frac{1-\alpha}{2}}^* \frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}, \ \hat{\mu}(\mathbf{x}_n) + p_{\frac{1-\alpha}{2}}^* \frac{\hat{\sigma}(\mathbf{x}_n)}{\sqrt{n}}\right)$$

Definition: Consistency

 $H_n(\cdot, \widehat{\mathbf{F}}_n)$ is said to be consistent for $H_A(\cdot, \mathbf{F})$ if for every $\epsilon > 0$ and $\mathbf{F} \in \mathcal{F}$,

$$\lim_{n\to\infty}\mathbb{P}_{\mathsf{F}}\left[\sup_{a}|H_n(a,\widehat{\mathsf{F}}_n)-H_A(a,\mathsf{F})|>\epsilon\right]=0.$$

The following conditions are due to Beran and Ducharme (1991):

(i) For every
$$\epsilon > 0$$
 and $\mathbf{F} \in \mathcal{F}$, $\widehat{\mathbf{F}}_n$ is such that

$$\lim_{n \to \infty} \mathbb{P}_{\mathbf{F}} [\sup_{a} |\widehat{\mathbf{F}}_n(a) - \mathbf{F}(a)| > \epsilon] = 0.$$

(ii) For each $\mathbf{F} \in \mathcal{F}$, $H_A(\cdot, \mathbf{F})$ is a continuous function.

(iii) For every *a* and any sequence
$$\{\mathbf{G}_n\} \in \mathcal{F}$$
 such that
 $\lim_{n\to\infty} \mathbf{G}_n(a) = \mathbf{F}(a)$, we have $\lim_{n\to\infty} H_n(a, \mathbf{G}_n) = H_A(a, \mathbf{F})$.

• Polya's Theorem: If $X_n \xrightarrow{D} X$ and F_X is continuous, then

$$\lim_{n\to\infty}\sup_{a}|F_{X_n}(a)-F_X(a)|=0.$$

• By Polya's Theorem, conditions (ii) and (iii) imply

$$\lim_{n\to\infty}\sup_{a}|H_n(a,\mathbf{G}_n)-H_A(a,\mathbf{F})|=0.$$

For F_n satisfying condition (i), we have with probability approaching one, F_n(a) is close to F(a) uniformly in a. This, together with the result above, leads to

$$\lim_{n\to\infty}\mathbb{P}_{\mathsf{F}}\left[\sup_{a}|H_n(a,\widehat{\mathsf{F}}_n)-H_A(a,\mathsf{F})|>\epsilon\right]=0.$$

That is, $H_n(\cdot, \widehat{\mathbf{F}}_n)$ is consistent for $H_A(\cdot, \mathbf{F})$:

- When $R(\mathbf{X}_n) \xrightarrow{D} R_A(\mathbf{F})$ and $H_A(\cdot, \mathbf{F})$ is continuous, Polya's theorem again ensures the convergence of $H_n(a, \mathbf{F})$ to $H_A(a, \mathbf{F})$ is uniform.
- This shows that the bootstrap distribution $H_n(a, \widehat{\mathbf{F}}_n)$ is capable of approximating the exact distribution $H_n(a, \mathbf{F})$, in the sense that

$$\lim_{n\to\infty}\mathbb{P}_{\mathsf{F}}\left[\sup_{a}|H_n(a,\widehat{\mathsf{F}}_n)-H_n(a,\mathsf{F})|>\epsilon\right]=0.$$

Bootstrap with Re-Sampling

Nonparametric bootstrap is computationally burdensome (for n = 10, it requires 10¹⁰ values). This may be greatly simplified by re-sampling.

• Randomly draw *n* observation from $\{x_1, x_2, ..., x_n\}$ with replacement:)

$$\mathbf{x}_{n,b}^{*} = (x_{1,b}^{*}, x_{2,b}^{*}, ..., x_{n,b}^{*}), \text{ for } b = 1, 2, ..., B.$$

• Empirical distribution function of $R(\mathbf{x}_n^*)$ is

$$\widetilde{H}_{n,B}(a,\mathbf{F}^*) = \frac{1}{B} \sharp \{ R(\mathbf{x}_{n,b}^*) \leq a, \ b = 1,\ldots,B \},$$

and by the Glivenko-Cantelli theorem,

$$\lim_{B\to\infty}\sup_{a}|\widetilde{H}_{n,B}(a,\mathbf{F}^*)-H_n(a,\mathbf{F}^*)|=0,\quad \text{a.s.}$$

• $\widetilde{H}_{n,B}(\cdot, \mathbf{F}^*)$ approximates $H_n(\cdot, \mathbf{F}^*)$ when *B* is large, and $H_n(\cdot, \mathbf{F}^*)$ in turn approximates $H_n(\cdot, \mathbf{F})$ when *n* is large.

Table: The coverage rates of the bootstrap and asymptotic methods.

	n = 10		<i>n</i> = 20		<i>n</i> = 50		n = 100	
F	Boot	Asymp	Boot	Asymp	Boot	Asymp	Boot	Asymp
$e^{\mathcal{N}(0,1)}$	0.9074	0.8060	0.9192	0.8498	0.9280	0.8910	0.9346	0.9162
t(5)	0.9396	0.9256	0.9338	0.9296	0.9434	0.9490	0.9408	0.9454
t(8)	0.9430	0.9168	0.9458	0.9414	0.9470	0.9478	0.9460	0.9494
t(11)	0.9436	0.9194	0.9460	0.9368	0.9494	0.9478	0.9506	0.9498

Given $y_i = \alpha + \beta x_i + \epsilon_i$, regress y_i on 1 and x_i and calculate the OLS estimates $\hat{\alpha}$ and $\hat{\beta}$ and their estimated standard deviations $\hat{\sigma}_{\hat{\alpha}}$ and $\hat{\sigma}_{\hat{\beta}}$. The i.i.d. bootstrap is

- 11. Generate random indices from a uniform distribution over $\{1, ..., n\}$ with replacement, denoted as $\{k_1^b, ..., k_n^b\}$.
- 12. Regress $\{y_{k_1^b}, ..., y_{k_n^b}\}$ on a constant term and $\{x_{k_1^b}, ..., x_{k_n^b}\}$ to obtain $\hat{\beta}_b^*$ and the estimated standard deviation $\hat{\sigma}_{\hat{\beta}_b^*}$. Compute the Studentized statistic: $\hat{R}_b^* := (\hat{\beta}_b^* \hat{\beta})/\hat{\sigma}_{\hat{\beta}_b^*}$.
- 13. Repeat the steps (i) and (ii) for b = 1, ..., B and rank the absolute value of \hat{R}_{b}^{*} in an ascending order: $\{\hat{R}_{r_{1}}^{*}, ..., \hat{R}_{r_{B}}^{*}\}$.

Example 5.2 (Continued)

• The bootstrapped 95% CI based on $\hat{\sigma}_{\hat{\beta}}$ is:

$$CI_{BM,1} = \left(\hat{\beta} - p_{0.95}^* \,\hat{\sigma}_{\hat{\beta}}, \,\hat{\beta} + p_{0.95}^* \,\hat{\sigma}_{\hat{\beta}}\right),$$

where $p_{0.95}^*$ is the 0.95 quantile of $\{\hat{R}_{r_1}^*, ..., \hat{R}_{r_B}^*\}$. 2 An alternative CI is

$$\begin{aligned} CI_{BM,2} &= \left(\hat{\beta} - p_{0.95}^* \, \hat{s}_{\hat{\beta}^*}, \ \hat{\beta} + p_{0.95}^* \, \hat{s}_{\hat{\beta}^*}\right), \\ \text{where } \hat{s}_{\hat{\beta}^*}^2 &= \frac{1}{B} \sum_{b=1}^B \left(\hat{\beta}_b^* - \overline{\hat{\beta}^*}\right)^2, \text{ and } \overline{\hat{\beta}^*} = \sum_{b=1}^B \hat{\beta}_b^* / B. \end{aligned}$$

$$\textbf{3 The CI based on non-Studentized statistic } (\hat{\beta}_b^* - \hat{\beta}) \text{ is } \end{aligned}$$

$$CI_{BM,3} = \left(\hat{\beta} - \tilde{p}_{0.95}^*, \ \hat{\beta} + \tilde{p}_{0.95}^*\right),$$

where $\tilde{p}^*_{0.95}$ is the 0.95-th quantile of $(\hat{\beta}^*_b - \hat{\beta})$.

Table: The coverage rates of β in simple linear regression.

	n = 10		<i>n</i> = 20		<i>n</i> = 50		<i>n</i> = 100	
$\mathcal{F}_{x}/\mathcal{F}_{\epsilon}$	Boot	Asymp	Boot	Asymp	Boot	Asymp	Boot	Asymp
$\mathcal{N}(0,1)/t(5)$	0.918	0.911	0.937	0.925	0.942	0.932	0.945	0.945
$\mathcal{N}(0,1)^2/t(3)$	0.917	0.912	0.927	0.906	0.919	0.931	0.934	0.939
$e^{\mathcal{N}(0,5)}/\mathcal{N}(0,1)$	0.932	0.922	0.938	0.934	0.901	0.956	0.910	0.951

Stationary Bootstrap

- Stationary bootstrap of Politis and Romano (1994):
 - It is applicable to stationary and weakly dependent data.
 - Observations are re-sampled in blocks so as to capture the dependence in data.
 - Each block has a random size determined by the geometric distribution with parameter *Q*.
- Given \mathbf{x}_n and 0 < Q < 1, the procedure is:
 - S1. Randomly select an observation, say x_t , from the data \mathbf{x}_n as the first bootstrapped observation $x_{1,b}^*$.
 - S2. With prob Q, $x_{2,b}^*$ is set to x_{t+1} , the obs following the previously sampled obs, and with prob 1 Q, the second bootstrapped obs $x_{2,b}^*$ is randomly selected from the original data \mathbf{x}_n .
 - S3. Repeat the second step to form $\mathbf{x}_{n,b}^*$, the *b*-th bootstrapped sample with *n* observations.

Goncalves and de Jong (2003)

Suppose that $Q(n) \to 1$ and $n(1 - Q(n))^2 \to \infty$. Then for any $\epsilon > 0$,

$$\mathbb{P}\Big[\sup_{\mathbf{a}\in\mathbb{R}}\big|\mathbb{P}^*[\sqrt{n}(\bar{X}_n^*-\bar{X}_n)\leq\mathbf{a}]-\mathbb{P}[\sqrt{n}(\bar{X}_n-\mu)\leq\mathbf{a}]\big|>\epsilon\Big]\to 0,$$

where $\mu = \mathbb{E}(X_t)$ and \mathbb{P}^* is the probability measure generated by stationary bootstrap.

- Expected block size: 1/(1-Q)
- Stationary bootstrap is close to i.i.d. bootstrap when $Q \rightarrow 0$.
- The larger the expected block size (the larger the *Q*), the better can such re-sampling preserve the dependence in data. But when the expected block size is too big, the bootstrapped samples would have smaller variation and hence result in poor approximation.

Example 6.1

- $X_t = \rho X_{t-1} + \varepsilon_t$, with $|\rho| < 1$ and $\varepsilon_t \sim \mathcal{N}(0, 1)$.
- Simulating the coverage rates of 95% confidence intervals of the mean of X_t; B = 1000 and R = 5000.

Table: The coverage rates of the stationary bootstrap method.

Q=0	0.5	0.7	0.9	0.95
0.9514	0.9414	0.9466	0.9284	0.8982
0.8494	0.8944	0.9178	0.9150	0.8822
0.6726	0.8100	0.8502	0.8690	0.8822
0.3460	0.5314	0.6214	0.7562	0.7742
	0.9514 0.8494 0.6726	0.95140.94140.84940.89440.67260.8100	0.9514 0.9414 0.9466 0.8494 0.8944 0.9178 0.6726 0.8100 0.8502	Q=00.50.70.90.95140.94140.94660.92840.84940.89440.91780.91500.67260.81000.85020.86900.34600.53140.62140.7562