
Generalized Method of Moment

CHUNG-MING KUAN

Department of Finance & CRETA

National Taiwan University

May 23, 2011

C.-M. Kuan (Finance & CRETA, NTU) Generalized Method of Moment May 23, 2011 1 / 50



Lecture Outline

1 Generalized Method of Moments

Examples of Moment Conditions

GMM Estimation

2 Asymptotic Properties of the GMM Estimator

Consistency

Asymptotic Normality

Asymptotic Efficiency

3 Different GMM Estimators

Two-Step Estimator

Iterative Estimator

Independently Weighted Estimator

Continuous Updating Estimator

4 Applications of the GMM

Regression with Symmetric Error

Generalized Instrumental Variables Estimator

Difference of Sharpe Ratios

Stochastic Volatility Models

C.-M. Kuan (Finance & CRETA, NTU) Generalized Method of Moment May 23, 2011 2 / 50



Lecture Outline (cont’d)

5 Large Sample Tests

Over-Identifying Restriction Test

Hausman Test

Wald Test

6 Estimation of Conditional Moment Restrictions

Estimation by GMM

The Number of Instruments

Optimal Instruments

7 Applications

Capital Asset Pricing Model (CAPM)

Cox, Ingersoll and Ross (CIR) Model

C.-M. Kuan (Finance & CRETA, NTU) Generalized Method of Moment May 23, 2011 3 / 50



Examples of Moment Conditions

Example 1: Given yt = x′tβ + et , consider the moment function:

IE(xtet) = IE[xt(yt − x′tβ)].

When x′tβ is correctly specified for the linear projection, the following moment

condition holds:

IE[xt(yt − x′tβo)] = 0,

for some βo . The sample counterpart,

1

T

T∑
t=1

xt(yt − x′tβ) = 0,

is also the FOC for OLS estimation.
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Example 2: given yt = f (xt ;β) + et and the moment function:

IE[∇f (xt ;β)et ] = IE{∇f (xt ;β)[yt − f (xt ;β)]}.

When f (xt ;β) is correctly specified for IE(yt |xt), we have the moment condition:

IE{xt [yt − f (xt ;βo)]} = 0,

for some βo . Its sample counterpart is the FOC for NLS estimation:

1

T

T∑
t=1

∇f (xt ;β)[yt − f (xt ;β)] = 0.

Example 3: Given the quasi-likelihood function f (xt ;θ), the moment condition

IE[∇ ln f (xt ;θo)] = 0 holds for the minimizer of the Kullback-Leibler information

criterion, βo , and its sample counterpart is the average of the score functions.
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Example 4: Given yt = x′tβ + et and the moment function:

IE(ztet) = IE[zt(yt − x′tβ)],

for some variables zt . When zt are proper instrument variables such that

IE[zt(yt − x′tβo)] = 0,

its sample counterpart is the FOC for IV estimation:

1

T

T∑
t=1

zt(yt − x′tβ) = 0.

Note: We can not solve for unknown parameters if the number of moment

conditions (i.e., the dimension of zt) is more than the number of parameters.
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GMM Estimation

Consider q moment functions IE[m(zt ;θ)], where θ is k × 1, suppose

IE[m(zt ;θo)] = 0.

for some unique parameter vector θo .

These conditions are exactly identified if q = k and over-identified if q > k.

When the conditions are exactly identified, θo can be estimated by solving

their sample counterpart:

m̄T (θ) =
1

T

T∑
t=1

m(zt ;θ) = 0.

This is known as the method of moment, which is not applicable when the

conditions are over-identified.
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When the conditions are over-identified, the following quadratic objective

function is minimized at θ = θo :

Q̄(θ; Wo) := IE[m(zt ;θ)]′Wo IE[m(zt ;θ)],

where Wo is a q × q symmetric and p.d. weighting matrix.

Hansen (1982, Econometrica): The generalized method of moments (GMM)

suggests estimating θo by minimizing

QT (θ; WT ) =
[
m̄T (θ)

]′
WT

[
m̄T (θ)

]
,

where WT , possibly dependent on the sample, is a symmetric and p.d. matrix

that converges to Wo in probability. The GMM estimator is:

θ̂T (WT ) = arg min
θ∈Θ

QT (θ; WT ),

which clearly depends on the choice of WT .
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The FOC of GMM estimation contains k equations in k unknowns:

GT (θ)′WT m̄T (θ) = 0,

where GT (θ) = T−1
∑T

t=1∇m(zt ;θ) is q × k . The GMM estimator can be

solved using a nonlinear optimization algorithm.

In the linear regression case,

m̄T (β) =
1

T

T∑
t=1

xt(yt − x′tβ).

When WT = Ik , the FOC of GMM estimation is(
1

T

T∑
t=1

xtx
′
t

)(
1

T

T∑
t=1

xt(yt − x′tβ)

)
= 0.

The resulting solution is the OLS estimator.
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Consistency

It can be seen that

|QT (θ; WT )− Q̄(θ; Wo)|

≤
∣∣∣[m̄T (θ)− IE m(zt ;θ)

]′
WT

[
m̄T (θ)− IE m(zt ;θ)

]∣∣∣
+
∣∣∣[m̄T (θ)− IE m(zt ;θ)

]′
WT IE

[
m(zt ;θ)

]∣∣∣
+
∣∣∣IE[m(zt ;θ)

]′
WT

[
m̄T (θ)− IE[m(zt ;θ)

]∣∣∣
+
∣∣∣IE[m(zt ;θ)

]′(
WT −Wo) IE

[
m(zt ;θ)

]∣∣∣ .
By invoking a suitable ULLN, QT (θ; WT ) is close to Q̄(θ; Wo) uniformly in θ

when T is large. Hence, the GMM estimator θ̂T (WT ) ought to be close to θo ,

the minimizer of Q̄(θ; Wo), for sufficiently large T . This approach is analogous to

that for establishing NLS and QMLE consistency.
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Asymptotic Normality

Consider the mean value expansion:

√
T m̄T

(
θ̂T (WT )

)
=
√
T m̄T (θo) + GT (θ†T )

√
T
(
θ̂T (WT )− θo

)
,

where θ†T lies between θ̂T (WT ) and θo . Using the FOC of GMM estimation,

0 = GT

(
θ̂T (WT )

)′
WT

√
T m̄T

(
θ̂T (WT )

)
= GT

(
θ̂T (WT )

)′
WT

√
T m̄T (θo)

+ GT

(
θ̂T (WT )

)′
WTGT (θ†T )

[√
T
(
θ̂T (WT )− θo

)]
= G′oWo

√
T m̄T (θo) + G′oWoGo

[√
T
(
θ̂T (WT )− θo

)]
+ oIP(1),

where GT

(
θ̂T (WT )

)
converges to Go = IE[∇m(zt ;θo)] uniformly in θ under a

suitable ULLN. It follows that

√
T
(
θ̂T (WT )− θo

)
= −

(
G′oWoGo

)−1
G′oWo

√
T m̄T (θo) + oIP(1).
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When m(zt ;θo) obey a central limit theorem:

√
T m̄T (θo) =

1√
T

T∑
t=1

m(zt ;θo)
D−→ N (0, Σo),

we have the following result.

Asymptotic Normality
√
T
(
θ̂T (WT )− θo

) D−→ N
(
0, Ωo(Wo)

)
, where

Ωo(Wo) =
(
G′oWoGo

)−1
G′oWoΣoWoGo

(
G′oWoGo

)−1
.

When Wo = Σ−1
o , Ωo(Wo) simplifies to

Ωo(Σ−1
o ) =

(
G′oΣ−1

o Go

)−1
G′oΣ−1

o Go

(
G′oΣ−1

o Go

)−1
=
(
G′oΣ−1

o Go

)−1
.
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Asymptotic Efficiency

To compare Ωo(Wo) and Ωo(Σ−1
o ), note that

Ωo(Σ−1
o )−1 −Ωo(Wo)−1

= G′oΣ−1
o Go − G′oWoGo

(
G′oWoΣoWoGo

)−1
G′oWoGo

= G′oΣ−1/2
o[

I−Σ1/2
o WoGo

(
G′oWoΣ1/2

o Σ1/2
o WoGo

)−1
G′oWoΣ1/2

o

]
Σ−1/2

o Go ,

which is p.s.d., because the matrix in the square bracket is symmetric and

idempotent. Thus, Ωo(Wo)−Ωo(Σ−1
o ) is p.s.d. Σ−1

o is also known as the

optimal (limiting) weighting matrix.

Note: In practice, we can obtain an asymptotically efficient GMM estimator by

computing the GMM estimator θ̂(WT ) such that WT is consistent for Σ−1
o .
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Two-Step Estimator

Hansen and Singleton (1982, Econometrica):

1 Compute a preliminary, consistent estimator based on the pre-specified

weighting matrix W0,T :

θ̂1,T (W0,T ) := arg min
θ∈Θ

[
m̄T (θ)

]′
W0,T

[
m̄T (θ)

]
.

For example, W0,T may be Iq.

2 Compute a consistent estimator for Σo based on θ̂1,T and use its inverse as

the optimal weighting matrix, i.e., WT (θ̂1,T ) = Σ̂
−1

T .

3 The two-step GMM estimator is computed as

θ̂2,T

(
Σ̂
−1

T

)
:= arg min

θ∈Θ

[
m̄T (θ)

]′
Σ̂
−1

T

[
m̄T (θ)

]
.

As Σ̂
−1

T is consistent for Σ−1
o , this is an asymptotically efficient estimator.
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Drawbacks of Two-Step Estimators

The finite-sample performance of the two-step estimator clearly depends on

the initial weighting matrix W0,T and the resulting, preliminary GMM

estimator θ̂1,T .

The second step hinges on a consistent estimator of Σo .

When m(zt ;θ) are not serially correlated,

Σ̂T =
1

T

T∑
t=1

m
(
zt ; θ̂1,T

)
m
(
zt ; θ̂1,T

)′
.

When m(zt ;θ) are serially correlated, a Newey-West type estimator is needed.

It has been shown that, as Σ̂T is determined by m(zt ;θ), the correlation

between m̄T and Σ̂T may induce finite-sample bias in θ̂2,T .
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Iterative Estimator

1 At the j th iteration, compute the j th iterative GMM estimator using the

weighting matrix WT (θ̂j−1,T ):

θ̂j,T := arg min
θ∈Θ

[
m̄T (θ)

]′
WT (θ̂j−1,T )

[
m̄T (θ)

]
.

The initial weighting matrix, W0,T , may be Iq.

2 Use θ̂j,T to construct the optimal weighting matrix WT (θ̂j,T ), which is

consistent for Σ−1
o , and set j = j + 1.

3 The convergence criteria for iterations: For some pre-specified ε,

‖QT (θ̂j,T )− QT (θ̂j−1,T )‖ ≤ ε, or ‖θ̂j,T −θ̂j−1,T‖ ≤ ε.

Note: More iterations may (or may not) improve finite-sample performance but do

not affect asymptotic efficiency.
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Independently Weighted Estimator

Altonji and Segal (1996, JBES): The independently weighted estimator avoids

possible correlation between m̄T and Σ̂T by splitting the sample into sub-samples

and computing m̄T and Σ̂T based on different sub-samples.

Split the sample into ` groups, and let m̄Tj
(θ) be the sample average of

m(zt ,θ) for t in the j th group with Tj observations.

Also let Σ̂
−1

T⊥j
be the optimal weighting matrix based on the observations not

in the j th group.

The resulting GMM estimator is computed as:

θ̂T := arg min
θ∈Θ

∑̀
j=1

[
m̄Tj

(θ)
]′

Σ̂
−1

T⊥j

[
m̄Tj

(θ)
]
.

A common choice of ` is 2.

C.-M. Kuan (Finance & CRETA, NTU) Generalized Method of Moment May 23, 2011 17 / 50



Continuous Updating Estimator

Hansen, Heaton and Yaron (1996, JBES): Instead of estimating in 2 (or more)

steps, the continuous updating (CU) estimator is based on one-time optimization:

θ̂T := arg min
θ∈Θ

[
m̄T (θ)

]′
WT (θ)

[
m̄T (θ)

]
.

Computing this estimator may be computationally cumbersome.

The limiting distribution of the resulting estimator is the same as that of the

two-step estimator; see Pakes and Pollard (1989, Econometrica).

The CU estimator is usually invariant when the moment conditions are

re-scaled, even when the scale factor is parameter dependent; the two-stage

or iterative GMM estimator is sensitive to such transformation, however.
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Regression with Symmetric Error

Given the specification yt = x′tβ + et , let

m(yt , xt ;β) =

[
xt(yt − x′tβ)

xt(yt − x′tβ)3

]
.

The moment condition IE[m(yt , xt ;βo)] = 0 suggests estimating βo while taking

into account symmetry of the error term. The gradient vector of m is:

∇m(yt , xt ;β) =

[
−xtx

′
t

−3xtx
′
t(yt − x′tβ)2

]
.

If the data are independent over t,

Σo = IE

[
ε2
t xtx

′
t ε4

t xtx
′
t

ε4
t xtx

′
t ε6

t xtx
′
t

]
.
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Let êt = yt − x′t β̂1,T , where β̂1,t is a first-step GMM estimator based on a

preliminary weighting matrix. Then, Σo may be estimated by the sample

counterpart:

Σ̂T (β̂1,T ) =
1

T

T∑
t=1

[
ê2
t xtx

′
t ê4

t xtx
′
t

ê4
t xtx

′
t ê6

t xtx
′
t

]
.

Note that β̂1,T here may be the OLS estimator; a consistent estimator for βo

suffices.

The two-step GMM estimator is computed with
[
Σ̂T (β̂1,T )

]−1
as the weighting

matrix. That is,

β̂2,T := arg min
θ∈Θ

m̄T (β)
[
Σ̂T (β̂1,T )

]−1
m̄T (β).
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Generalized Instrumental Variables Estimator

For the specification yt = x′tβ + et , consider the moment condition:

IE[mt(βo)] = IE[zt(yt − x′tβo)] = 0,

where zt contains q > k instrumental variables. The GMM estimator minimizes(
1

T

T∑
t=1

zt(yt − x′tβ)

)′
WT

(
1

T

T∑
t=1

zt(yt − x′tβ)

)
,

and solves(
T∑
t=1

xtz
′
t

)
WT

(
T∑
t=1

zt(yt − x′tβ)

)
= (X′Z)WT [Z′(y − Xβ)] = 0.

where Z (T × q) is the matrix of instrumental variables and X (T × k) is the

matrix of regressors.
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The GMM estimator is

β̂(WT ) = (X′ZWTZ′X)−1X′ZWTZ′y.

which is known as the generalized instrumental variables estimator (GIVE).

When the data are independent and there is no condition heteroskedasticity,

Σo = var

(
1√
T

T∑
t=1

zt(yt − x′tβo)

)
=
σ2
o

T

T∑
t=1

IE(ztz
′
t).

Ignoring σ2
o in Σo , we can estimate T−1

∑T
t=1 IE(ztz

′
t) by Z′Z/T .

This leads to the following two-step estimator:

β̂2,T (Z′Z) = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y = [X̃
′
X̃]−1X̃

′
y,

where X̃ = Z(Z′Z)−1Z′X is the matrix of fitted values from the OLS

regression of X on Z. As such, this is also known as the two-stage least

squares (2SLS) estimator.
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When the data are independent and there is conditional heteroskedasticity,

the 2SLS estimator remains consistent (why?), but it is not asymptotically

efficient.

A two-step GMM estimator with a properly estimated weighting matrix

[Σ̂T (β̂1,T )]−1 would be more efficient asymptotically. For example, the

weighting matrix may be

Σ̂T (β̂1,T ) =
1

T

T∑
t=1

ê2
t ztz

′
t ,

where êt = yt − x′t β̂1,T are the residuals from the first-step GMM estimation.

When the data are dependent over time, a Newey-West type estimator of the

weighting matrix would be needed.
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Difference of Sharpe Ratios

Lo (2002, FAJ)

Let rt,j , j = 1, 2, be the monthly return of the j-th mutual fund with mean µj

and rf the risk free rate. The Difference of Sharpe ratios (DSR) is a criterion

to evaluate their relative risk-adjusted performance:

DSR(θ) :=
µ1 − rf√
γ1 − µ2

1

− µ2 − rf√
γ2 − µ2

2

,

where γj := IE(r2
t,j) so that var(rt,j) = γj − µ2

j .

Let zt = (rt,1, rt,2, r
2
t,1, r

2
t,2)′ and θo = (µ1, µ2, γ1, γ2)′. We may estimate θo

based on the moment conditions: IE[zt − θo ] = 0 so that the (G)MM

estimator is θ̂T =
∑T

t=1 zt/T .
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The (G)MM estimator is such that
√
T (θ̂T − θo)

D−→ N (0,Σo), where

Σo = lim
T→∞

IE

[
1

T

T∑
t=1

T∑
s=1

(zt − θo)(zs − θo)′

]
,

because zt may be serially dependent due to, e.g., volatility clustering. Σo

may be estimated using a Newey-West type estimator Σ̂T .

Using the delta method

√
T
[
DSR(θ̂T )− DSR(θo)

] D−→ N
(
0,∇θDSR(θo) Σo ∇θDSR(θo)′

)
,

where ∇θDSR(θo) is(
∂DSR(θ)

∂µ1

∂DSR(θ)

∂µ2

∂DSR(θ)

∂γ1

∂DSR(θ)

∂γ2

)∣∣∣∣
θ=θo

.

The covariance matrix estimator of DSR is therefore

∇θDSR(θ̂T ) Σ̂T ∇θDSR(θ̂T )′.
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Stochastic Volatility Models

Stochastic volatility (SV) models: See Shephard (1996) and Taylor (2005) for

some surveys. Taylor (1986) model daily return as

rt = µ+ σtut ,

log(σt)− α = φ(log(σt−1)− α) + ηt , |φ| < 1,

where ut are i.i.d. N (0, 1), ηt are i.i.d. N (0, β2(1− φ2)), and ut and ηt are

mutually independent. Also assume σt is positive stationary and IE(σ4
t ) is

finite. The parameter vector is θ = (µ, α, β, φ)′.

The moment conditions:

IE |rt − µ|i = IE
(
σi
t

)
IE
(
|ut |i

)
,

IE
[
|rt − µ|k |rt+τ − µ|k

]
= IE

(
σk
t σ

k
t+τ

)
IE
(
|ut |k

)2
.
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Consider the sample moment functions:

1

T

T∑
t=1

|rt − r̄ |i − IE
(
σi
t

)
IE
(
|uit |
)
, i = 1, 2, 3, 4,

where r̄ =
∑T

t=1 rt/T , and for τ > 0,

1

T

T∑
t=1

(
|rt − r̄ |

)k(|rt+τ − r̄ |
)k − IE

(
σk
t σ

k
t+τ

)
IE
(
|ukt |

)2
, k = 1, 2.

Under certain distribution conditions, it can be shown that IE
(
σi
t

)
,

IE
(
σk
t σ

k
t+τ

)
, and IE(|uit |) have analytic forms.

For a normally distributed ut ,

IE(|ut |p) = 2p/2π−1/2 Γ((p + 1)/2).
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As log(σt) ∼ N (α, β2), we have for any positive number p,

log(σp
t ) = p log(σt) ∼ N (pα, p2β2).

By the moment generating function of normal r.v.,

IE(σp
t ) = exp

(
pα +

1

2
p2β2

)
.

The AR(1) structure of log(σt) implies

cov(log σp
t , log σp

t+τ ) = p2cov(log σt , log σt+τ ) = p2β2φ|τ |.

Therefore,

log(σp
t ) + log(σp

t+τ ) ∼ N
(
2pα, 2p2β2(1 + φ|τ |)

)
.

Using moment generating function and logA + logB = logAB we have

IE(σp
t σ

p
t+τ ) = exp

(
2pα + p2β2(1 + φ|τ |)

)
.
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Over-Identifying Restrictions Test

To test whether the model for IE[m(zt ,θ0)] = 0 is correctly specified, it is natural

to check if m̄T (θ̂T ) is sufficiently close to zero. For example, when the moment

conditions are the Euler equations in different capital asset pricing models, this

amounts to checking if the “pricing errors” are zero.

The over-identifying restrictions (OIR) test of Hansen (1982), also known as the

J test, is based on the value of the GMM objective function:

JT (WT ) := T
[
m̄T

(
θ̂T (WT )

)]′
WT

[
m̄T

(
θ̂T (WT )

)]
.

This test is quite unusual, because the test statistic involves the GMM estimator

obtained from the same objective function.
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To derive its limiting distribution, note that

W
1/2
T

√
T m̄T

(
θ̂T (WT )

)
= W

1/2
T

√
T m̄T (θo) + W

1/2
T GT (θ†T )

√
T
(
θ̂T (WT )− θo

)
.

As
√
T
(
θ̂T (WT )− θo

)
= −

(
G′oWoGo

)−1
G′oWo

√
T m̄T (θo) + oIP(1),

W
1/2
T

√
T m̄T

(
θ̂T (WT )

)
= Po W1/2

o

√
T m̄T (θo) + oIP(1)

where Po = I−W1/2
o Go

(
G′oWoGo

)−1
G′oW1/2

o which is symmetric and

idempotent with rank q − k (why?), and

W1/2
o

√
T m̄T (θo)

D−→ N (0, W1/2
o ΣoW1/2

o ).

When Wo = Σ−1
o , W1/2

o

√
T m̄T (θo)

D−→ N (0, Iq). Consequently,

JT (WT ) = T m̄T (θo)′W1/2
o PoPoW1/2

o m̄T (θo)
D−→ χ2(q − k).

C.-M. Kuan (Finance & CRETA, NTU) Generalized Method of Moment May 23, 2011 30 / 50



The Limiting Distribution of the OIR Test

Let Σ̂T be a consistent estimator of Σo . Then,

JT
(
Σ̂
−1

T

)
:= T

[
m̄T

(
θ̂T

(
Σ̂
−1

T

))]′
Σ̂
−1

T

[
m̄T

(
θ̂T

(
Σ̂
−1

T

))] D−→ χ2(q − k),

where θ̂T

(
Σ̂
−1

T

)
is the optimal two-step GMM estimator.

Remarks:

The weighting matrix in the JT
(
Σ̂
−1

T

)
statistic and the weighting matrix for

the GMM estimator in m̄T must be the same. That is, the OIR test requires

the optimal two-step GMM estimator.

Lee and Kuan (2010) propose an OIR test that does not requires the

weighting matrix to converge to Σo and hence avoids the optimal GMM

estimation.
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Hausman Test

Given two estimators θ̂T and θ̌T of the parameter θo , suppose that both are

consistent under the null hypothesis of correct model specification, but only one,

say θ̌T , is also consistent under the alternative. The Hausman test suggests

testing the null hypothesis by comparing these two estimators.

The Hausman test is particularly useful for testing the model specification that

can not be expressed as parameter restrictions. For example, consider the null

hypothesis of exogenous regressors and the alternative of endogenous regressors.

Under “classical” conditions, the OLS estimator θ̂T and the 2SLS estimator θ̌T

are consistent under the null, but only the 2SLS estimator is consistent under the

alternative. Thus, we can test for endogeneity by checking if θ̂T and θ̌T are

sufficiently close to each other.
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The Hausman test reads:

HT = T
(
θ̂T − θ̌T

)′
V̂
−1

T

(
θ̂T − θ̌T

) D−→ χ2(k),

where V̂T is a consistent estimator for the asymptotic covariance matrix of√
T
(
θ̂T − θ̌T

)
:

V
(
θ̂T − θ̌T

)
= V

(
θ̂T

)
+ V

(
θ̌T

)
− 2 cov

(
θ̂T , θ̌T

)
.

This asymptotic covariance matrix is simplified when θ̂T is also asymptotically

efficient under the null. In this case,

V1,2 := cov
(
θ̂T , θ̌T

)
= V(θ̂T ),

so that V
(
θ̂T − θ̌T

)
depends only on the respective asymptotic covariance

matrices of these two estimators:

V
(
θ̂T − θ̌T

)
= V

(
θ̌T

)
− V

(
θ̂T

)
.
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Note that

cov
(
θ̌T − θ̂T , θ̂T

)
= V1,2 − V(θ̂T ).

If this covariance is not zero, we may combine θ̌T − θ̂T and θ̂T to form a new

estimator that is more efficient than θ̂T . Consider the new estimator

θ̂
†
T = θ̂T +

[
V
(
θ̂T

)
− V1,2

]
V
(
θ̂T − θ̌T

)−1(
θ̌T − θ̂T

)
,

with the variance:

V
(
θ̂
†
T

)
= V

(
θ̂T

)
−
[
V
(
θ̂T

)
− V1,2

]
V
(
θ̂T − θ̌T

)−1[
V
(
θ̂T

)
− V1,2

]′
.

When V
(
θ̂T

)
is not the same as V1,2, the second term on the RHS is p.d., so

that θ̂
†
T is asymptotically more efficient than θ̂T . This contradicts the assumption

that θ̂T is asymptotically efficient. Therefore, we must have V
(
θ̂T

)
= V1,2.
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Wald Test

Hypothesis: R(θ) = 0, where R : RK 7→ Rr . A mean-value expansion yields

R(θ̂T ) = R(θ0) +∇R(θ†)(θ̂T − θ0),

where
√
T (θ̂T − θ0)

D−→ N (0,Ω0). Therefore,

√
T
[
R(θ̂T )− R(θ0)

] D−→ N
(
0, [∇R(θo)]Ω0[∇R(θo)]′

)
.

It follows that, under the null hypothesis,

WT := TR
(
θ̂T

)′ ([∇R
(
θ̂T

)]
Ω̂T

[
∇R
(
θ̂T

)]′)−1

R
(
θ̂T

) D−→ χ2(r).

where Ω̂T is a consistent estimator of Ωo . For the linear hypothesis Rθ0 = r with

R a r × k matrix,

WT = T (Rθ̂T − r)′(RΩ̂TR′)−1(Rθ̂T − r)
D−→ χ2(r).
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Estimation by GMM

Suppose that an economic model yields some conditional moment restrictions.

That is, there exists unique θo such that

IE[h(ηt ;θo)|F t ] = 0,

where F t is the information set up to time t, ηt is not F t-measurable, and h is

r × 1. To estimate θo , consider the implied, unconditional moment conditions:

IE[D(wt)
′h(ηt ;θo)] = 0,

where wt is a set of variables from F t and D(wt) is a (r × n) matrix of n

instruments based on wt and has full rank. Then, we can estimate θo by applying

the GMM to the sample moment functions:

1

T

T∑
t=1

mt(θ) =
1

T

T∑
t=1

D(wt)
′h(ηt ;θ).

Q: How do we choose wt and D(wt)?
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The Number of Instruments

The optimal GMM estimator based on the instruments D(wt) has the asymptotic

covariance matrix:
(
G′oΣ−1

o Go

)−1
, with

Σo = IE
[
D(wt)

′h(ηt ;θo)h(ηt ;θo)′D(wt)
]
, (n × n)

Go = IE
[
D(wt)

′∇h(ηt ;θo)
]
. (n × k)

Consider another optimal GMM estimator based on a smaller set of instruments

D(wt)C, with C an n × p (p < n) matrix. For example, C may be a selection

matrix [Ip 0]. Such estimator is obtained from the sample moment conditions:

1

T

T∑
t=1

C′D(wt)
′h(ηt ;θ),

and has the asymptotic covariance matrix:[
G′oC(C′ΣoC)−1C′Go

]−1
.
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The difference between these two asymptotic covariance matrices is

G′oΣ−1
o Go − G′oC(C′ΣoC)−1C′Go

= G′oΣ−1/2
o

[
In −Σ1/2

o C(C′Σ1/2
o Σ1/2

o C)−1C′Σ1/2
o

]
Σ−1/2

o Go ,

which is p.s.d., because the term in the square bracket is symmetric and

idempotent. Thus, the optimal GMM estimator based on a larger set of moment

conditions is asymptotically more efficient than that based on a subset of moment

conditions. This suggests that, as far as GMM efficiency is concerned, more

instruments would be preferred. It has been found, however, that the estimator

based on more instruments tends to have a larger bias in finite samples.
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Optimal Instruments

Consider the matrix of k instruments:

D∗(wt ;θo) =
[
var(h(ηt ;θo)|F t)︸ ︷︷ ︸

Vt

]−1
IE
[
∇h(ηt ;θo)|F t

]︸ ︷︷ ︸
Jt

, (r × k)

In this case,

Σo = IE
(
J′tV

−1
t VtV

−1
t Jt

)
= IE

(
J′tV

−1
t Jt

)
,

Go = IE
[
J′tV

−1
t ∇h(ηt ;θo)

]
= IE

(
J′tV

−1
t Jt

)
.

The asymptotic covariance matrix of the optimal GMM estimator based on the

instruments D∗(wt ;θo) is(
G′oΣ−1

o Go

)−1
= IE

(
J′tV

−1
t Jt

)−1
.
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For the GMM estimator based on the instruments D(wt), the asymptotic

covariance matrix is{
IE[∇h(ηt ;θo)′D(wt)] IE

[
D(wt)

′h(ηt ;θo)h(ηt ;θo)′D(wt)
]−1

IE[D(wt)
′∇h(ηt ;θo)]

}−1

=
{

IE[J′tD(wt)] IE
[
D(wt)

′VtD(wt)
]−1

IE[D(wt)
′Jt ]
}−1

.

Given the difference below:

IE
(
J′tV

−1
t Jt

)
− IE[J′tD(wt)] IE

[
D(wt)

′VtD(wt)
]−1

IE[D(wt)
′Jt ],

it is readily verified that its sample counterpart is p.s.d. Passing to the limit, we

can conclude that the optimal GMM estimator based on the instruments

D∗(wt ;θo) has the smallest asymptotic covariance matrix IE
(
J′tV

−1
t Jt

)−1
.

D∗(wt ;θo) is thus the matrix of optimal instruments. As D∗(wt ;θo) contains k

instruments, the implied moment conditions are exactly identified.
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Suppose the conditional moment restriction is IE(yt − x′tβo |F t) = 0. Letting

εt = yt − x′tβo and σ2
εt

= var(εt |F t)−1, the optimal instruments are σ−2
εt

x′t .

The implied unconditional moments are

IE
[
σ−2
εt

xt(yt − x′tβo)
]

= 0.

This is precisely the first order condition of a weighted least squares objective

function (also the GLS objective function), as it ought to be.

In practice, the optimal instruments are unknown and need to be estimated.

Estimating the optimal instruments is cumbersome because Jt and Vt are

conditional expectations of unknown form.

A common choice of the instruments D(wt) is a low-order polynomial in the

elements of wt . With arbitrary instruments, there is no guarantee that the

parameter θo is still identified in the implied, unconditional moment

restrictions; see Doḿınguez and Lobato (2004, Econometrica) and Hsu and

Kuan (2011, J. of Econometrics) for details.
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Capital Asset Pricing Model

Cochrane (2005)

Consider a utility function of the current and future consumptions:

U(ct , ct+1) = u(ct) + IE[βu(ct+1)|F t ],

where β is the subjective discount factor. A common choice of u is

u(ct) :=
c1−γ
t − 1

1− γ
.

Note that u(c) ≈ c1−γ ln c → ln c when γ → 1.

Writing IE(·|F t) as IEt(·), an investor’s choice problem is

max
qt

u(ct) + IEt [βu(ct+1)],

s.t. ct = et − ptqt , ct+1 = et+1 + xt+1qt ,

where e is the endowment, and q, p, x are, respectively, the quantity, price,

and payoff of the asset.
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The Euler equation (first-order condition) yields

ptu
′(ct) = IEt

[
βu′(ct+1)xt+1

]
,

where ptu
′(ct) is the marginal loss in utility from buying one more unit of

asset at time t, whereas IEt [βu
′(ct+1)xt+1] is the increase in the discounted

utility of getting extra payoff at time t + 1. Thus, the asset choice, and

hence the optimal consumption, is determined by the equality of marginal

gain and marginal loss.

We can also write

pt = IEt

[
β
u′(ct+1)

u′(ct)
xt+1

]
.

This is the basic asset pricing formula which indicates, given the consumption

choices of ct and ct+1, what the market price pt should be.
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Equivalently, pt = IEt(ψt+1xt+1), where

ψt+1 := β
u′(ct+1)

u′(ct)
,

is also known as the stochastic discount factor (or pricing kernel, marginal

rate of substitution).

The basic pricing formula is

pt = IEt(ψt+1xt+1) or 1 = IEt(ψt+1rt+1),

where rt+1 = xt+1/pt is the gross return.

The pricing formula is a conditional moment restriction, in which the SDF,

ψt+1, contains unknown parameters. For example, ψ may depend on the risk

adverse parameter γ when u(ct) := c1−γ
t −1
1−γ , and ψ may depend on γ and the

habit persistent parameter δ when

u(ct) =
(ct + δct−1)1−γ − 1

1− γ
.
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In our notations,

IEt

[
ψt+1(θo)xt+1 − pt

]
= IEt

[
ht+1(ηt ;θo)

]
= 0,

where ht+1(θo) is the pricing error or test function.

Examples of Test Asset

price (pt) payoff (xt+1)

Stock pt pt+1 + dt+1

Return 1 rt+1

Price-dividend ratio pt
dt

( pt+1

dt+1
+ 1) dt+1

dt

Excess return 0 r et+1 = r at+1 − rbt+1

One-period bond pt 1

Risk-free rate 1 rf
Option C max(ST − K , 0)
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The pricing formula for stock is

pt = IEt

[
ψt+1(dt+1 + pt+1)

]
.

As GMM requires stationarity of data, it would be better to consider

1 = IEt

[
ψt+1(dt+1 + pt+1)/pt

]
,

where the stock return (dt+1 + pt+1)/pt is more likely to be stationary.

The pricing error for stock is then

IEt

[
ψt+1(θo)

dt+1 + pt+1

pt
− 1

]
= IEt

[
h(ηt+1;θo)

]
= 0.

The implied unconditional moment restrictions are

IE[D(wt)
′h(ηt+1;θo)] = 0, where D(wt) is in F t , and the GMM estimation

of θo is based on the sample moments:

1

T

T∑
t=1

D(wt)
′h(ηt+1;θ).
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Some Examples

Specifying a utility function: u(ct) := c1−γ
t −1
1−γ , 0 < γ 6= 1. Then,

h(ηt+1;θ) = β

(
ct+1

ct

)−γ
rt+1 − 1.

Specifying a pricing kernel: A nonlinear kernel of Dittmar (2002, JF):

ψt+1(ηt+1;θ) := d0 + d1rW ,t+1 + d2r
2
W ,t+1 + d3r

3
W ,t+1,

where rW ,t+1 represents the return on end-of-period aggregate wealth. We

may write the pricing error IEt(ψt+1rt+1 − 1) as

IEt(rt+1) =
1

IEt(ψt+1)
− covt(rt+1, ψt+1)

1

IEt(ψt+1)
.

Note that with the nonlinear pricing kernel, the terms covt(rt+1, r
j
W ,t+1),

j = 1, 2, 3, are consistent with higher-order moment CAPM.
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Cox, Ingersoll and Ross (CIR) Model

Cox et al. (1985, Econometrica) assume the instantaneous short rate follows

the diffusion:

drt = κ(r̄ − rt) dt + σ
√
rt dWt .

Thus, rt is mean reverting to the long-run level r̄ and has conditional

volatility σ
√
rt .

The conditional density of rt+1 given rt is

f (rt+1|rt) = c exp(−ut − vt+1)
(nt+1

ut

)q/2

Iq(2(ytvt+1)1/2),

where c = 2κ/[σ2(1− e−κ)], ut = ce−κrt , vt+1 = crt+1, q = 2κr̄/σ2 − 1,

and Iq is the modified Bessel function of the first kind of order q. This is a

non-central χ2 distribution with 2q + 2 degrees of freedom and the

non-centrality parameter 2ut .
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From the density above, we can integrate to obtain the conditional mean:

IE(rt+4|rt) = rte
−4κ + r̄(1− e−4κ).

For 4 = 1, we have the conditional moment restriction:

IEt

[
rt+1 − rte

−κ − r̄(1− e−κ)
]

= 0.

With the instruments D(wt), the implied, unconditional moment conditions

are

IE
[(
rt+1 − rte

−κ − r̄(1− e−κ)
)
D(wt)

]
= 0.

Then, θ = (r̄ , κ) can be estimated based on the sample moment functions:

1

T

T∑
t=1

ht+1(θ) =
1

T

T∑
t=1

[
rt+1 − rte

−κ + r̄(1− e−κ)
]
D(wt).
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Similarly, we can compute the conditional variance as

vart(rt+1) = rt
σ

κ

(
e−κ − e−2κ) + r̄

σ2

2κ
(1− e−κ

)2

.

Hence, IEt(r
2
t+1) = vart(rt+1)−

(
IEt(rt+1)

)2
.

With the instruments D(wt), the additional sample moment functions are

1

T

T∑
t=1

ht+1(θ) =
1

T

T∑
t=1

[
r2
t+1 − vart(rt+1) +

(
IEt(rt+1)

)2]
D(wt),

where we need to replace vart(rt+1) and IEt(rt+1) by their functional forms

given above.
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