Exercises for Practice: Linear Algebra

(1) Find the angle between the vectors ($1,2,0,3$) and $(2,4,-1,1)$.
(2) Find two unit vectors that are orthogonal to $(3,-2)$.
(3) Let S be a basis for an n-dimensional vector space V. Show that every set in V with more than n vectors must be linearly dependent.
(4) Let matrix A be symmetric. Show that A^{\top} is symmetric.
(5) Show that orthogonal transformations preserve dot products and norms.
(6) Prove that a rotation matrix is an orthogonal matrix.
(7) Let X be an $n \times k$ matrix with $\operatorname{rank}(X)=\operatorname{rank}\left(X^{\top} X\right)=k<n$. Find $\operatorname{rank}\left(X\left(X^{\top} X\right)^{-1} X^{\top}\right)$.
(8) Consider the quadratic form $f(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ such that A is not symmetric. Find $\nabla_{\mathbf{x}} f(\mathbf{x})$.
(9) Let X be an $n \times k$ matrix with full column rank and Σ be an $n \times n$ symmetric, positive definite matrix. Show that $X\left(X^{\top} \Sigma^{-1} X\right)^{-1} X^{\top} \Sigma^{-1}$ is a projection matrix but not an orthogonal projection matrix.
(10) Let ℓ be a vector of n ones. Show that $\ell \ell^{\top} / n$ is an orthogonal projection matrix.
(11) Let S_{1} and S_{2} be two subspaces of V such that $S_{2} \subseteq S_{1}$. Let P_{1} and P_{2} be two orthogonal projection matrices projecting vectors onto S_{1} and S_{2}, respectively. Find $P_{1} P_{2}$ and $\left(I-P_{1}\right)\left(I-P_{2}\right)$.
(12) Show that a matrix is positive definite if and only if its eigenvalues are all positive.
(13) Let A be a symmetric and idempotent matrix. Show that $\operatorname{trace}(A)$ is the number of non-zero eigenvalues of A and $\operatorname{rank}(A)=\operatorname{trace}(A)$.
(14) Let P be the orthogonal matrix such that $P^{\top}\left(A^{\top} A\right) P=\Lambda$, where A is $n \times k$ with rank $k<n$. What are the properties of $Z^{*}=A P$ and $Z=Z^{*} \Lambda^{-1 / 2}$? Note that the column vectors of $Z^{*}(Z)$ are known as the (standardized) principal axes of $A^{\top} A$.

