(Econometric Theory III, September 2011, NTU)

Exercises for Practice: Linear Algebra

- (1) Find the angle between the vectors (1, 2, 0, 3) and (2, 4, -1, 1).
- (2) Find two unit vectors that are orthogonal to (3, -2).
- (3) Let *S* be a basis for an *n*-dimensional vector space *V*. Show that every set in *V* with more than *n* vectors must be linearly dependent.
- (4) Let matrix *A* be symmetric. Show that A^{\dagger} is symmetric.
- (5) Show that orthogonal transformations preserve dot products and norms.
- (6) Prove that a rotation matrix is an orthogonal matrix.
- (7) Let X be an $n \times k$ matrix with $rank(X) = rank(X^{\intercal}X) = k < n$. Find $rank(X(X^{\intercal}X)^{-1}X^{\intercal})$.
- (8) Consider the quadratic form $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} A \mathbf{x}$ such that *A* is not symmetric. Find $\nabla_{\mathbf{x}} f(\mathbf{x})$.
- (9) Let *X* be an $n \times k$ matrix with full column rank and Σ be an $n \times n$ symmetric, positive definite matrix. Show that $X(X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}$ is a projection matrix but not an orthogonal projection matrix.
- (10) Let ℓ be a vector of *n* ones. Show that $\ell \ell^{\intercal}/n$ is an orthogonal projection matrix.
- (11) Let S_1 and S_2 be two subspaces of V such that $S_2 \subseteq S_1$. Let P_1 and P_2 be two orthogonal projection matrices projecting vectors onto S_1 and S_2 , respectively. Find P_1P_2 and $(I P_1)(I P_2)$.
- (12) Show that a matrix is positive definite if and only if its eigenvalues are all positive.
- (13) Let A be a symmetric and idempotent matrix. Show that trace(A) is the number of non-zero eigenvalues of A and rank(A) = trace(A).
- (14) Let *P* be the orthogonal matrix such that $P^{T}(A^{T}A)P = \Lambda$, where *A* is $n \times k$ with rank k < n. What are the properties of $Z^* = AP$ and $Z = Z^*\Lambda^{-1/2}$? Note that the column vectors of $Z^*(Z)$ are known as the (standardized) principal axes of $A^{T}A$.