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Simple Linear Regression

Given the variable of interest y , we are interested in finding a function of

another variable x that can characterize the systematic behavior of y .

y : Dependent variable or regressand

x : Explanatory variable or regressor

Specifying a linear function of x : α + βx with unknown parameters α

and β

The non-systematic part is the error: y − (α + βx)

Together we write:

y = α + βx︸ ︷︷ ︸
linear model

+ e(α, β)︸ ︷︷ ︸
error

.
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For the specification α + βx , the objective is to find the “best” fit of the

data (yt , xt), t = 1, . . . ,T .

1 Minimizing a least-squares (LS) criterion function wrt α and β:

QT (α, β) :=
1

T

T∑
t=1

(yt − α− βxt)2.

2 Minimizing a least-absolute-deviation (LAD) criterion wrt α and β:

1

T

T∑
t=1

|yt − α− βxt |.

3 Minimizing asymmetrically weighted absolute deviations:

1

T

θ ∑
t:yt>α−βxt

|yt − α− βxt |+ (1− θ)
∑

t:yt<α−βxt

|yt − α− βxt |

 ,

with 0 < θ < 1.
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The OLS Estimators

The first order conditions (FOCs) of LS minimization are:

∂Q(α, β)

∂α
= − 2

T

T∑
t=1

(yt − α− βxt) = 0,

∂Q(α, β)

∂β
= − 2

T

T∑
t=1

(yt − α− βxt)xt = 0.

The solutions are known as the ordinary least squares (OLS)

estimators:

β̂T =

∑T
t=1(yt − ȳ)(xt − x̄)∑T

t=1(xt − x̄)2
,

α̂T = ȳ − β̂T x̄ .
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The estimated regression line is ŷ = α̂T + β̂T x , which is the linear

model evaluated at α̂T and β̂T , and ê = y − ŷ is the error evaluated

at α̂T and β̂T and also known as residual.

The t-th fitted value of the regression line is ŷt = α̂T + β̂T xt .

The t-th residual is êt = yt − ŷt = et(α̂T , β̂T ).

β̂T characterizes the the predicted change of y , given a change of one

unit of x , whereas α̂T is the predicted y without x .

No linear model of the form a + bx can provide a better fit of the

data in terms of sum of squared errors.

For the OLS method here, we make no assumption on the data,

except that xt can not be a constant.
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Algebraic Properties

Substituting α̂T and β̂T into the FOCs:

T∑
t=1

(yt − α− βxt) = 0,
T∑
t=1

(yt − α− βxt)xt = 0,

we have the following algebraic results:∑T
t=1 êt = 0.∑T
t=1 êtxt = 0.∑T
t=1 yt =

∑T
t=1 ŷt so that ȳ = ¯̂y .

ȳ = α̂T + β̂T x̄ ; that is, the estimated regression line must pass

through the point (x̄ , ȳ).
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Example: Analysis of Suicide Rate

Suppose we want to know how the suicide rate (s) in Taiwan can be

explained by unemployment rate (u), GDP growth rate (g), or time

(t). The suicide rate is 1/100000.

Data (1981–2010): s̄ = 11.7 with s.d. 3.93; ḡ = 5.94 with s.d. 3.15;

ū = 2.97 with s.d. 1.33.

Estimation results:

ŝt = 14.53− 0.48 gt , R̄2 = 0.12;

ŝt = 15.70− 0.69 gt−1, R̄2 = 0.25;

ŝt = 4.47 + 2.43 ut , R̄2 = 0.67;

ŝt = 4.66 + 2.48 ut−1, R̄2 = 0.66;

ŝt = 7.25 + 0.29 t, R̄2 = 0.39.
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Multiple Linear Regression

With k regressors x1, . . . , xk (x1 is usually the constant one):

y = β1x1 + · · ·+ βkxk + e(β1, . . . , βk).

With data (yt , xt1, . . . , xtk), t = 1, . . . ,T , we can write

y = Xβ + e(β), (1)

where β = (β1 β2 · · · βk)′,

y =


y1
y2
...

yT

 , X =


x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xT1 xT2 · · · xTk

 , e(β) =


e1(β)

e2(β)
...

eT (β)

 .
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Least-squares criterion function:

QT (β) :=
1

T
e(β)′e(β) =

1

T
(y − Xβ)′(y − Xβ). (2)

The FOCs of minimizing QT (β) are −2X′(y − Xβ)/T = 0, leading

to the normal equations:

X′Xβ = X′y.

Identification Requirement [ID-1]: X is of full column rank k .

Any column of X is not a linear combination of other columns.

Intuition: X does not contain redundant information.

When When X is not of full column rank, we say there exists exact

multicollinearity among regressors.
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Given [ID-1], X′X is positive definite and hence invertible. The unique

solution to the normal equations is known as the OLS estimator of β:

β̂T = (X′X)−1X′y. (3)

Under [ID-1], we have the second order condition:

∇2
β QT (β) = 2(X′X)/T is p.d.

The result below holds whenever the identification requirement is

satisfied, and it does not depend on the statistical properties of y and

X.

Theorem 3.1

Given specification (1), suppose [ID-1] holds. Then, the OLS estimator

β̂T = (X′X)−1X′y uniquely minimizes the criterion function (2).
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The magnitude of β̂T is affected by the measurement units of the

dependent and explanatory variables; see homework. Thus, a larger

coefficient does not imply that the associated regressor is more

important.

Given β̂T , the vector of the OLS fitted values is ŷ = Xβ̂T , and the

vector of the OLS residuals is ê = y − ŷ = e(β̂T ).

Plugging β̂T into the FOCs X′(y − Xβ) = 0, we have:

X′ê = 0.

When X contains a vector of ones,
∑T

t=1 êt = 0.

ŷ′ê = β̂
′
TX′ê = 0.

These are all algebraic results under the OLS method.

C.-M. Kuan (Finance & CRETA, NTU) Classical Least Squares Theory October 24, 2011 14 / 96



Geometric Interpretations

Recall that P = X(X′X)−1X′ is the orthogonal projection matrix that

projects vectors onto span(X), and IT − P is the orthogonal projection

matrix that projects vectors onto span(X)⊥, the orthogonal complement of

span(X). Thus, PX = X and (IT − P)X = 0.

The vector of fitted values, ŷ = Xβ̂T = X(X′X)−1X′y = Py, is the

orthogonal projection of y onto span(X).

The residual vector, ê = y − ŷ = (IT − P)y, is the orthogonal

projection of y onto span(X)⊥.

ê is orthogonal to X, i.e., X′ê = 0, and it is also orthogonal to ŷ

because ŷ is in span(X), i.e., ŷ′ê = 0.
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1

y

ê = (I − P )y

x1

x2

x1β̂1

x2β̂2 Py = x1β̂1 + x2β̂2

c© Chung-Ming Kuan, 2007

Figure: The orthogonal projection of y onto span(x1,x2).
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Theorem 3.3 (Frisch-Waugh-Lovell)

Given y = X1β1 + X2β2 + e, the OLS estimators of β1 and β2 are

β̂1,T = [X′1(I− P2)X1]−1X′1(I− P2)y,

β̂2,T = [X′2(I− P1)X2]−1X′2(I− P1)y,

where P1 = X1(X′1X1)−1X′1 and P2 = X2(X′2X2)−1X′2.

This result shows that β̂1,T can be computed from regressing

(I− P2)y on (I− P2)X1, where (I− P2)y and (I− P2)X1 are the

residual vectors of y on X2 and X1 on X2, respectively.

Similarly, regressing (I− P1)y on (I− P1)X2 yields β̂2,T .

The OLS estimator of regressing y on X1 is not the same as β̂1,T ,

unless X1 and X2 are orthogonal to each other.
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Proof: Writing y = X1β̂1,T + X2β̂2,T + (I−P)y, where P = X(X′X)−1X′

with X = [X1 X2], we have

X′1(I− P2)y

= X′1(I− P2)X1β̂1,T + X′1(I− P2)X2β̂2,T + X′1(I− P2)(I− P)y

= X′1(I− P2)X1β̂1,T + X′1(I− P2)(I− P)y.

We know span(X2) ⊆ span(X), so that span(X)⊥ ⊆ span(X2)⊥. Hence,

(I− P2)(I− P) = I− P, and

X′1(I− P2)y = X′1(I− P2)X1β̂1,T + X′1(I− P)y

= X′1(I− P2)X1β̂1,T ,

from which we obtain the expression for β̂1,T .
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Frisch-Waugh-Lovell Theorem

Observe that (I− P1)y = (I− P1)X2β̂2,T + (I− P1)(I− P)y.

(I− P1)(I− P) = I− P, so that the residual vector of regressing

(I− P1)y on (I− P1)X2 is identical to the residual vector of

regressing y on X = [X1 X2]:

(I− P1)y = (I− P1)X2β̂2,T + (I− P)y.

P1 = P1P, so that the orthogonal projection of y directly on

span(X1) (i.e., P1y) is equivalent to iterated projections of y on

span(X) and then on span(X1) (i.e., P1Py). Hence,

(I− P1)X2β̂2,T = (I− P1)Py = (P− P1)y.
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y

ê = (I −P)y

Py

(I −P1)y

(P−P1)y

x1

x2

P1y

Figure 1: An Illustration of the Frisch-Waugh-Lovell Theorem.

τ0 τc level trend
0.01 -2.5816 -3.3986 0.7526 0.2235
0.025 -2.2378 -3.1033 0.5706 0.1827
0.05 -1.9582 -2.8587 0.4556 0.1490
0.1 -1.6353 -2.5678 0.3430 0.1188
0.5 -0.5181 -1.5614 0.1183 0.0559
0.9 0.8638 -0.4461 0.0459 0.0279
0.95 1.2706 -0.0957 0.0365 0.0234
0.975 1.6118 0.2467 0.0299 0.0202
0.99 2.0048 0.6194 0.0245 0.0174

Table 1: Some percentiles of the distributions of the Dickey-Fuller and KPSS tests with sample size,
5000, and 20000 replications.

1

Figure: An illustration of the Frisch-Waugh-Lovell Theorem.
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Measures of Goodness of Fit

Given ŷ′ê = 0, we have y′y = ŷ′ŷ + ê′ê, where y′y is known as TSS

(total sum of squares), ŷ′ŷ is RSS (regression sum of squares), and

ê′ê is ESS (error sum of squares).

The non-centered coefficient of determination (or non-centered R2),

R2 =
RSS

TSS
= 1− ESS

TSS
, (4)

measures the proportion of the total variation of yt that can be

explained by the model.

It is invariant wrt measurement units of the dependent variable but not

invariant wrt constant addition.

It is a relative measure such that 0 ≤ R2 ≤ 1.

It is nondecreasing in the number of regressors. (Why?)
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Centered R2

When the specification contains a constant term,

T∑
t=1

(yt − ȳ)2 =
T∑
t=1

(ŷt − ¯̂y)2 +
T∑
t=1

ê2t ,

i.e., centered TSS = centered RSS + ESS.

The centered coefficient of determination (or centered R2),

R2 =

∑T
t=1(ŷt − ȳ)2∑T
t=1(yt − ȳ)2

=
Centered RSS

Centered TSS
= 1− ESS

Centered TSS
,

measures the proportion of the total variation of yt that can be

explained by the model, excluding the effect of the constant term.

It is invariant wrt constant addition.

0 ≤ R2 ≤ 1, and it is non-decreasing in the number of regressors.

It may be negative when the model does not contain a constant term.
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Centered R2: Alternative Interpretation

When the specification contains a constant term,

T∑
t=1

(yt − ȳ)(ŷt − ȳ) =
T∑
t=1

(ŷt − ȳ + êt)(ŷt − ȳ) =
T∑
t=1

(ŷt − ȳ)2,

because
∑T

t=1 ŷt êt =
∑t

t=1 êt = 0.

Centered R2 can also be expressed as

R2 =

∑T
t=1(ŷt − ȳ)2∑T
t=1(yt − ȳ)2

=
[
∑T

t=1(yt − ȳ)(ŷt − ȳ)]2

[
∑T

t=1(yt − ȳ)2][
∑T

t=1(ŷt − ȳ)2]
,

which is the the squared sample correlation coefficient of yt and ŷt ,

also known as the squared multiple correlation coefficient.

Models for different dep. variables are not comparable in terms of R2.
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Adjusted R2

Adjusted R2 is the centered R2 adjusted for the degrees of freedom:

R̄2 = 1− ê′ê/(T − k)

(y′y − Tȳ2)/(T − 1)
.

R̄2 adds a penalty term to R2:

R̄2 = 1− T − 1

T − k
(1− R2) = R2 − k − 1

T − k
(1− R2),

where the penalty term depends on the trade-off between model

complexity and model explanatory ability.

R̄2 may be negative and need not be non-decreasing in k .
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Example: Analysis of Suicide Rate

Q: How the suicide rate (s) can be explained by unemployment rate

(u), GDP growth rate (g), and time (t) during 1981–2010?

Estimation results with gt and ut :

ŝt = 14.53− 0.48 gt , R̄2 = 0.12;

ŝt = 4.47 + 2.43 ut , R̄2 = 0.67;

ŝt = 4.06 + 2.49 ut + 0.05 gt , R̄2 = 0.66.

Estimation results with gt−1 and ut−1:

ŝt = 15.70− 0.69 gt−1, R̄2 = 0.25;

ŝt = 4.66 + 2.48 ut−1, R̄2 = 0.66;

ŝt = 4.51 + 2.50 ut−1 + 0.02 gt−1, R̄2 = 0.65.
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Estimation results with t but without g :

ŝt = 4.47 + 2.43 ut , R̄2 = 0.67;

ŝt = 4.47 + 2.46 ut − 0.01 t, R̄2 = 0.66;

ŝt = 4.66 + 2.48 ut−1, R̄2 = 0.66;

ŝt = 4.66 + 2.44 ut−1 + 0.01 t, R̄2 = 0.65.

Estimation results with t and g :

ŝt = 4.04 + 2.49 ut + 0.05 gt , R̄2 = 0.66;

ŝt = 4.04 + 2.50 ut + 0.05 gt − 0.003 t, R̄2 = 0.65;

ŝt = 4.51 + 2.50 ut−1 + 0.02 gt−1, R̄2 = 0.65;

ŝt = 4.47 + 2.46 ut−1 + 0.02 gt−1 + 0.01 t, R̄2 = 0.64.
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Estimation results with t and t2:

ŝt = 7.25 + 0.29 t, R̄2 = 0.39;

ŝt = 13.36− 0.86 t + 0.04 t2, R̄2 = 0.81;

ŝt = 10.86 + 1.10 ut − 0.75 t + 0.03 t2, R̄2 = 0.84;

ŝt = 14.16− 0.10 gt − 0.87 t + 0.04 t2, R̄2 = 0.81;

ŝt = 11.13 + 1.07 ut − 0.03 gt − 0.76 t + 0.03 t2, R̄2 = 0.84;

ŝt = 10.93 + 1.15 ut−1 − 0.76 t + 0.03 t2, R̄2 = 0.85;

ŝt = 12.95 + 0.06 gt−1 − 0.87 t + 0.04 t2, R̄2 = 0.80;

ŝt = 9.54 + 1.29 ut−1 + 0.16 gt−1 − 0.78 t + 0.03 t2, R̄2 = 0.85.

As far as R̄2 is concerned, a specification with t, t2, and u seems to

provide good fit of data and reasonable interpretation.

Q: Is there any other way to determine if a specification is “good”?
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Classical Conditions

To derive the statistical properties of the OLS estimator, we assume:

[A1] X is non-stochastic.

[A2] y is a random vector such that

(i) IE(y) = Xβo for some βo ;

(ii) var(y) = σ2
oIT for some σ2

o > 0.

[A3] y is a random vector s.t. y ∼ N (Xβo , σ
2
oIT ) for some βo and σ2o > 0.

The specification (1) with [A1] and [A2] is known as the classical

linear model, whereas (1) with [A1] and [A3] is the classical normal

linear model.

When var(y) = σ2oIT , the elements of y are homoskedastic and

(serially) uncorrelated.
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Without Normality

The OLS estimator of the parameter σ2o is

σ̂2T =
1

T − k

T∑
t=1

ê2t .

Theorem 3.4

Consider the linear specification (1).

(a) Given [A1] and [A2](i), β̂T is unbiased for βo .

(b) Given [A1] and [A2], σ̂2T is unbiased for σ2o .

(c) Given [A1] and [A2], var(β̂T ) = σ2o(X′X)−1.
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Proof: By [A1], IE(β̂T ) = IE[(X′X)−1X′y] = (X′X)−1X′ IE(y). [A2](i)

gives IE(y) = Xβo , so that

IE(β̂T ) = (X′X)−1X′Xβo = βo ,

proving unbiasedness. Given ê = (IT − P)y = (IT − P)(y − Xβo),

IE(ê′ê) = IE[trace
(
(y − Xβo)′(IT − P)(y − Xβo)

)]
= IE[trace

(
(y − Xβo)(y − Xβo)′(IT − P)

)]
= trace

(
IE[(y − Xβo)(y − Xβo)′](IT − P)

)
= trace

(
σ2oIT (IT − P)

)
= σ2o trace(IT − P).

where the 4-th equality follows from [A2](ii) that var(y) = σ2oIT .
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Proof (cont’d): As trace(IT − P) = rank(IT − P) = T − k , we have

IE(ê′ê) = σ2o(T − k) and

IE(σ̂2T ) = IE(ê′ê)/(T − k) = σ2o ,

proving (b). By [A1] and [A2](ii),

var(β̂T ) = var
(
(X′X)−1X′y

)
= (X′X)−1X′[var(y)]X(X′X)−1

= σ2o(X′X)−1X′ITX(X′X)−1

= σ2o(X′X)−1.

This establishes the assertion of (c).
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Theorem 3.4 establishes unbiasedness of the OLS estimators β̂T and

σ̂2T but does not address the issue of efficiency.

By Theorem 3.4(c), the elements of β̂T can be more precisely

estimated (i.e., with a smaller variance) when X has larger variation.

To see this, consider the simple linear regression: y = α + βx + e, it

can be verified that

var(β̂T ) = σ2o
1∑T

t=1(xt − x̄)2
.

Thus, the larger the (squared) variation of xt (i.e.,
∑T

t=1(xt − x̄)2),

the smaller is the variance of β̂T .
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The result below establishes efficiency of β̂T among all unbiased

estimators of βo that are linear in y.

Theorem 3.5 (Gauss-Markov)

Given linear specification (1), suppose that [A1] and [A2] hold. Then the

OLS estimator β̂T is the best linear unbiased estimator (BLUE) for βo .

Proof: Consider an arbitrary linear estimator β̌T = Ay, where A is a

non-stochastic matrix, say, A = (X′X)−1X′ + C. Then, β̌T = β̂T + Cy,

such that

var(β̌T ) = var(β̂T ) + var(Cy) + 2 cov(β̂T ,Cy).

By [A1] and [A2](i), IE(β̌T ) = βo + CXβo , which is unbiased iff CX = 0.
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Proof (cont’d): The condition CX = 0 implies cov(β̂T ,Cy) = 0. Thus,

var(β̌T ) = var(β̂T ) + var(Cy) = var(β̂T ) + σ2oCC′.

This shows that var(β̌T )− var(β̂T ) is a p.s.d. matrix σ2oCC′, so that β̂T

is more efficient than any linear unbiased estimator β̌T .
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Example: IE(y) = X1b1 and var(y) = σ2oIT . Two specification:

y = X1β1 + e.

with the OLS estimator b̂1,T , and

y = Xβ + e = X1β1 + X2β2 + e.

with the OLS estimator β̂T = (β̂
′
1,T β̂

′
2,T )′. Clearly, b̂1,T is the BLUE of

b1 with var(b̂1,T ) = σ2o(X′1X1)−1. By the Frisch-Waugh-Lovell Theorem,

IE(β̂1,T ) = IE
(
[X′1(IT − P2)X1]−1X′1(IT − P2)y

)
= b1,

IE(β̂2,T ) = IE
(
[X′2(IT − P1)X2]−1X′2(IT − P1)y

)
= 0.

That is, β̂T is unbiased for (b′1 0′)′.
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Example (cont’d):

var(β̂1,T ) = var([X′1(IT − P2)X1]−1X′1(IT − P2)y)

= σ2o [X′1(IT − P2)X1]−1.

As X′1X1 − X′1(IT − P2)X1 = X′1P2X1 is p.s.d., it follows that

[X′1(IT − P2)X1]−1 − (X′1X1)−1

is p.s.d. This shows that b̂1,T is more efficient than β̂1,T , as it ought to

be.
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With Normality

Under [A3] that y ∼ N (Xβo , σ
2
oIT ), the log-likelihood function of y is

log L(β, σ2) = −T

2
log(2π)− T

2
log σ2− 1

2σ2
(y−Xβ)′(y−Xβ).

The score vector is

s(β, σ2) =

 1
σ2 X′(y − Xβ)

− T
2σ2 + 1

2σ4 (y − Xβ)′(y − Xβ)

 ,
Solutions to s(β, σ2) = 0 are the (quasi) maximum likelihood

estimators (MLEs). Clearly, the MLE of β is the OLS estimator, and

the MLE of σ2 is

σ̃2T =
(y − Xβ̂T )′(y − Xβ̂T )

T
=

ê′ê

T
6= σ̂2T .
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With the normality condition on y, a lot more can be said about the OLS

estimators.

Theorem 3.7

Given the linear specification (1), suppose that [A1] and [A3] hold.

(a) β̂T ∼ N
(
βo , σ

2
o(X′X)−1

)
.

(b) (T − k)σ̂2T/σ
2
o ∼ χ2(T − k).

(c) σ̂2T has mean σ2o and variance 2σ4o/(T − k).

Proof: For (a), we note that β̂T is a linear transformation of

y ∼ N (Xβo , σ
2
oIT ) and hence also a normal random vector. As for (b),

writing ê = (IT − P)(y − Xβo), we have

(T − k)σ̂2T/σ
2
o = ê′ê/σ2o = y∗′(IT − P)y∗,

where y∗ = (y − Xβo)/σo ∼ N (0, IT ) by [A3].
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Proof (cont’d): Let C orthogonally diagonalizes IT − P such that

C′(IT − P)C = Λ. Since rank(IT − P) = T − k , Λ contains T − k

eigenvalues equal to one and k eigenvalues equal to zero. Then,

y∗′(IT − P)y∗ = y∗′C[C′(IT − P)C]C′y∗ = η′

[
IT−k 0

0 0

]
η.

where η = C′y∗. As η ∼ N (0, IT ), ηi are independent, standard normal

random variables. It follows that

y∗′(IT − P)y∗ =
T−k∑
i=1

η2i ∼ χ2(T − k),

proving (b). (c) is a direct consequence of (b) and the facts that

χ2(T − k) has mean T − k and variance 2(T − k).
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Theorem 3.8

Given the linear specification (1), suppose that [A1] and [A3] hold. Then

the OLS estimators β̂T and σ̂2T are the best unbiased estimators (BUE)

for βo and σ2o , respectively.

Proof: The Hessian matrix of the log-likelihood function is

H(β, σ2) =

 − 1
σ2 X′X − 1

σ4 X′(y − Xβ)

− 1
σ4 (y − Xβ)′X T

2σ4 − 1
σ6 (y − Xβ)′(y − Xβ)

 .
Under [A3], IE[s(βo , σ

2
o)] = 0 and

IE[H(βo , σ
2
o)] =

 − 1
σ2
o
X′X 0

0 − T
2σ4

o

 .
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Proof (cont’d):

By the information matrix equality, − IE[H(βo , σ
2
o)] is the information

matrix. Then, its inverse,

− IE[H(βo , σ
2
o)]−1 =

 σ2o(X′X)−1 0

0 2σ4
o

T

 ,
is the Cramér-Rao lower bound.

var(β̂T ) achieves this lower bound (the upper-left block) so that β̂T

is the best unbiased estimator for βo . This conclusion is much

stronger than the Gauss-Markov Theorem.

Although var(σ̂2T ) = 2σ4o/(T − k) is greater than the lower bound

(lower-right element), it can be shown that σ̂2T is still the best

unbiased estimator for σ2o ; see Rao (1973, p. 319) for a proof.
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Tests for Linear Hypotheses

Linear hypothesis: Rβo = r, where R is q × k with full row rank q

and q < k , r is a vector of hypothetical values.

A natural way to construct a test statistic is to compare Rβ̂T and r ;

we reject the null if their difference is too “large.”

Given [A1] and [A3], Theorem 3.7(a) states:

β̂T ∼ N
(
βo , σ

2
o(X′X)−1

)
,

so that

Rβ̂T ∼ N (Rβo , σ
2
o [R(X′X)−1R′]).

The comparison between Rβ̂T and r is based on this distribution.
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Suppose first that q = 1. Then, Rβ̂T and R(X′X)−1R′ are scalars. Under

the null hypothesis,

Rβ̂T − r

σo [R(X′X)−1R′]1/2
=

R(β̂T − βo)

σo [R(X′X)−1R′]1/2
∼ N (0, 1).

An operational statistic is obtained by replacing σo with σ̂T :

τ =
Rβ̂T − r

σ̂T [R(X′X)−1R′]1/2
.

Theorem 3.9

Given the linear specification (1), suppose that [A1] and [A3] hold. When

R is 1× k , τ ∼ t(T − k) under the null hypothesis.

Note: This t distribution result holds under the normality condition [A3].
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Proof: We write the statistic τ as

τ =
Rβ̂T − r

σo [R(X′X)−1R′]1/2

/√
(T − k)σ̂2T/σ

2
o

T − k
,

where the numerator is N (0, 1) and (T − k)σ̂2T/σ
2
o is χ2(T − k) by

Theorem 3.7(b). The assertion follows when the numerator and

denominator are independent. This is indeed the case, because β̂T and ê

are jointly normally distributed with

cov(ê, β̂T ) = IE[(IT − P)(y − Xβo)y′X(X′X)−1]

= (IT − P) IE[(y − Xβo)y′]X(X′X)−1

= σ2o(IT − P)X(X′X)−1 = 0.
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Examples

To test βi = c , let R = [0 · · · 0 1 0 · · · 0] and mij be the (i , j) th element

of M−1 = (X′X)−1. Then,

τ =
β̂i ,T − c

σ̂T
√
mii
∼ t(T − k),

where mii = R(X′X)−1R′. τ is a t statistic; for testing βi = 0, τ is also

referred to as the t ratio.

It is straightforward to verify that to test aβi + bβj = c , with a, b, c given

constants, the corresponding test reads:

τ =
aβ̂i ,T + bβ̂j ,T − c

σ̂T
√

[a2mii + b2mjj + 2abmij ]
∼ t(T − k).
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When R is a q × k matrix with full row rank, note that

(Rβ̂T − r)′[R(X′X)−1R′]−1(Rβ̂T − r)/σ2o ∼ χ2(q).

An operational statistic is

ϕ =
(Rβ̂T − r)′[R(X′X)−1R′]−1(Rβ̂T − r)/(σ2oq)

(T − k)σ̂2T/[σ2o(T − k)]

=
(Rβ̂T − r)′[R(X′X)−1R′]−1(Rβ̂T − r)

σ̂2Tq
.

When q = 1, ϕ = τ2.

Theorem 3.10

Given the linear specification (1), suppose that [A1] and [A3] hold. When

R is q × k with full row rank, ϕ ∼ F (q,T − k) under the null hypothesis.
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Example: Ho : β1 = b1 and β2 = b2. The F statistic,

ϕ =
1

2σ̂2T

(
β̂1,T − b1
β̂2,T − b2

)′ [
m11 m12

m21 m22

]−1(
β̂1,T − b1
β̂2,T − b2

)
,

is distributed as F (2,T − k).

Example: Ho : β2 = 0, and β3 = 0, · · · and βk = 0,

ϕ =
1

(k − 1)σ̂2T


β̂2,T
β̂3,T

...

β̂k,T


′ 

m22 m23 · · · m2k

m32 m33 · · · m3k

...
...

mk2 mk3 · · · mkk


−1

β̂2,T
β̂3,T

...

β̂k,T

 ,

is distributed as F (k − 1,T − k) and known as regression F test.
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Test Power

To examine the power of the F test, we evaluate the distribution of ϕ

under the alternative hypothesis: Rβo = r + δ, with R is a q × k matrix

with rank q < k and δ 6= 0.

Theorem 3.11

Given the linear specification (1), suppose that [A1] and [A3] hold. When

Rβo = r + δ,

ϕ ∼ F (q,T − k ; δ′D−1δ, 0),

where D = σ2o [R(X′X)−1R′], and δ′D−1δ is the non-centrality parameter

of the numerator of ϕ.
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Proof: When Rβo = r + δ,

[R(X′X)−1R′]−1/2(Rβ̂T − r)/σo = D−1/2[R(β̂T − βo) + δ],

which is distributed as N (0, Iq) + D−1/2δ. Then,

(Rβ̂T − r)′[R(X′X)−1R′]−1(Rβ̂T − r)/σ2o ∼ χ2(q; δ′D−1δ),

a non-central χ2 distribution with the non-centrality parameter δ′D−1δ. It

is also readily seen that (T − k)σ̂2T/σ
2
o is still distributed as χ2(T − k).

Similar to the argument before, these two terms are independent, so that

ϕ has a non-central F distribution.
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Test power is determined by the non-centrality parameter δ′D−1δ,

where δ signifies the deviation from the null. When Rβo deviates

farther from the hypothetical value r (i.e., δ is “large”), the

non-centrality parameter δ′D−1δ increases, and so does the power.

Example: The null distribution is F (2, 20), and its critical value at 5%

level is 3.49. Then for F (2, 20; ν1, 0) with the non-centrality

parameter ν1 = 1, 3, 5, the probabilities that ϕ exceeds 3.49 are

approximately 12.1%, 28.2%, and 44.3%, respectively.

Example: The null distribution is F (5, 60), and its critical value at 5%

level is 2.37. Then for F (5, 60; ν1, 0) with ν1 = 1, 3, 5, the

probabilities that ϕ exceeds 2.37 are approximately 9.4%, 20.5%, and

33.2%, respectively.
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Alternative Interpretation

Constrained OLS: Finding the saddle point of the Lagrangian:

min
β,λ

1

T
(y − Xβ)′(y − Xβ) + (Rβ − r)′λ,

where λ is the q × 1 vector of Lagrangian multipliers, we have

λ̈T = 2[R(X′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X′X/T )−1R′λ̈T/2.

The constrained OLS residuals are

ë = y − Xβ̂T + X(β̂T − β̈T ) = ê + X(β̂T − β̈T ),

with β̂T − β̈T = (X′X)−1R′[R(X′X)−1R′]−1(Rβ̂T − r).
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The sum of squared, constrained OLS residuals are:

ë′ë = ê′ê + (β̂T − β̈T )′X′X(β̂T − β̈T )

= ê′ê + (Rβ̂T − r)′[R(X′X)−1R′]−1(Rβ̂T − r),

where the 2nd term on the RHS is the numerator of the F statistic.

Letting ESSc = ë′ë and ESSu = ê′ê we have

ϕ =
ë′ë− ê′ê

qσ̂2T
=

(ESSc − ESSu)/q

ESSu/(T − k)
,

suggesting that F test in effect compares the constrained and

unconstrained models based on their lack-of-fitness.

The regression F test is thus ϕ = (R2
u−R2

c )/q
(1−R2

u)/(T−k)
which compares model

fitness of the full model and the model with only a constant term.
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Confidence Regions

A confidence interval for βi ,o is the interval (g
α
, gα) such that

IP{ g
α
≤ βi ,o ≤ gα} = 1− α,

where (1− α) is known as the confidence coefficient.

Letting cα/2 be the critical value of t(T − k) with tail prob. α/2,

IP

{∣∣(β̂i ,T − βi ,o)/(σ̂T√mii
)∣∣ ≤ cα/2

}
IP

{
β̂i ,T cα/2σ̂T

√
mii ≤ βi ,o ≤ β̂i ,T + cα/2σ̂T

√
mii

}
= 1− α.
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The confidence region for a vector of parameters can be constructed

by resorting to F statistic.

For (β1,o = b1, β2,o = b2)′, suppose T − k = 30 and α = 0.05. Then,

F0.05(2, 30) = 3.32, and

IP

 1

2σ̂2T

(
β̂1,T − b1
β̂2,T − b2

)′ [
m11 m12

m21 m22

]−1(
β̂1,T − b1
β̂2,T − b2

)
≤ 3.32


is 1− α, which results in an ellipse with the center (β̂1,T , β̂2,T ).

Note: It is possible that (β1, β2) is outside the confidence box formed

by individual confidence intervals but inside the joint confidence

ellipse. That is, while a t ratio may indicate statistic significance of a

coefficient, the F test may suggest the opposite based on the

confidence region.
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Example: Analysis of Suicide Rate

Part I: Estimation results with t

const ut ut−1 t R̄2 Reg F

4.47 2.43 0.67 60.57∗∗

(4.39∗∗) (7.78∗∗)

4.47 2.46 −0.01 0.66 29.21∗∗

(4.32∗∗) (4.81∗∗) −0.07

4.66 2.48 0.66 58.03∗∗

(4.60∗∗) (7.62∗∗)

4.66 2.44 0.01 0.65 27.99∗∗

(4.51∗∗) (4.65∗∗) 0.10

Note: The numbers in parentheses are t-ratios; ∗∗ and ∗ stand for significance of

a two-sided test at 1% and 5% levels.
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Part II: Estimation results with t and g

const ut ut−1 gt gt−1 t R̄2 Reg F

4.04 2.49 0.05 0.66 29.34∗∗

(2.26∗) (6.80∗∗) 0.29

4.04 2.50 0.05 −0.003 0.65 18.84∗∗

(2.21∗) (4.62∗∗) 0.28 −0.04

4.51 2.50 0.02 0.65 27.99∗∗

(2.09∗) (5.73∗∗) 0.08

4.47 2.46 0.02 0.01 0.64 17.98∗∗

(2.00∗) (4.25∗∗) 0.10 0.11

F tests for the joint significance of the coefficients of g and t: 0.04 (Model 2)

and 0.01 (Model 4).
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Part III: Estimation results with t and t2

const ut ut−1 gt gt−1 t t2 R̄2/F

13.36 −0.86 0.04 0.81

(13.30∗∗) (−5.74∗∗) (7.90∗∗) 62.74∗∗

10.86 1.10 −0.75 0.03 0.84

(8.21∗∗) (2.61∗∗) (−5.33∗∗) (5.70∗∗) 53.06∗∗

11.13 1.07 −0.03 −0.76 0.03 0.84

(6.27∗∗) (2.38∗) −0.24 (−5.21∗∗) (5.59∗∗) 38.36∗∗

10.93 1.15 −0.76 0.03 0.85

(8.83∗∗) (2.85∗∗) (−5.57∗∗) (6.05∗∗) 55.53∗∗

9.54 1.29 0.16 −0.78 0.03 0.85

(5.83∗∗) (3.11∗∗) 1.28 (−5.74∗∗) (6.26∗∗) 43.07∗∗

F tests for the joint significance of the coefficients of g and t: 13.72∗∗ (Model 3)

and 16.69∗∗ (Model 5).
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Selected estimation results:

ŝt = 10.86 + 1.10 ut − 0.75 t + 0.03 t2, R̄2 = 0.84;

ŝt = 10.93 + 1.15 ut−1 − 0.76 t + 0.03 t2, R̄2 = 0.85.

The marginal effect of u on s: The second model predicts an increase

of this year’s suicide rate by 1.15 (approx. 264 persons) when there is

one percent increase of last year’s unemployment rate.

The time effect is −0.76 + 0.06t and changes with t: At 2010, this

effect is approx 1.04 (approx. 239 persons).

Since 1993 (about 12.6 years after 1980), there has been a natural

increase of the suicide rate in Taiwan. Lowering unemployment rate

would help cancel out the time effect to some extent.

The prediction of the suicide rate in 2010 is 21.43 (vs. actual suicide

rate 16.8); the difference, corresponding to approx. 1000 persons,

seems too large.
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Near Multicollinearity

It is more common to have near multicollinearity: Xa ≈ 0.

Writing X = [xi Xi ], we have from the FWL Theorem that

var(β̂i ,T ) = σ2o [x′i (I− Pi )xi ]
−1 =

σ2o∑T
t=1(xti − x̄i )

2(1− R2(i))
,

where Pi = Xi (X′iXi )
−1X′i , and R2(i) is the centered R2 from

regressing xi on Xi .

Consequence of near multicollinearity:

R2(i) is high, so that var(β̂i,T ) tend to be large and that β̂i,T are

sensitive to data changes.

Large var(β̂i,T ) lead to small (insignificant) t ratios. Yet, regression F

test may suggest that the model (as a whole) is useful.
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How do we circumvent the problems from near multicollinearity?

Try to break the approximate linear relation.

Adding more data if possible.

Dropping some regressors.

Statistical approaches:

Ridge regression: For some λ 6= 0,

b̂ridge = (X′X + λIk)−1X′y.

Principal component regression:

Note: Multicollinearity vs. “micronumerosity” (Goldberger)
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Digression: Regression with Dummy Variables

Example: Let yt denote the wage of the t th individual and xt the working

experience (in years). We consider the following specification:

yt = α0 + α1Dt + β0xt + et ,

where Dt is a dummy variable such that Dt = 1 if t is a male and Dt = 0

otherwise. This specification puts together two regressions: the regression

for female (Dt = 0) has intercept α0, and the regression for male (Dt = 1)

has intercept α0 + α1. These two regressions coincide if α1 = 0.

We may also consider the specification:

yt = α0 + α1Dt + β0xt + β1(xtDt) + et .

Then, the slopes of the regressions for female and male are, respectively,

β0 and β0 + β1. These two regressions coincide if α1 = 0 and β1 = 0.
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Example: Consider two dummy variables:

D1,t = 1 if high school is t’s highest degree and D1,t=0 otherwise;

D2,t = 1 if college or graduate is t’s highest degree and D2,t=0 otherwise.

The specification below in effect puts together 3 regressions:

yt = α0 + α1D1,t + α2D2,t + βxt + et ,

where below-high-school regression has intercepts α0, high-school

regression has intercept α0 + α1, college regression has intercept α0 + α2.

Similar to the previous example, we may also consider a more general

specification in which x interacts with D1 and D2.

Dummy variable trap: To avoid exact multicollinearity, the number of

dummy variables in a model (with the constant term) should be one less

than the number of groups.
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Example: Analysis of Suicide Rate

Let Dt = 1 for t = T ∗ + 1, . . . ,T and Dt = 0 otherwise, where T ∗ is the

year of structure change. Consider the specification:

st = α0 + δDt + β0ut−1 + γut−1Dt + et .

The before-change regression has intercept α0 and slope β0, and the

after-change regression has intercept α0 + δ and slope β0 + γ. Testing a

structure change at T ∗ amounts to testing δ = 0 and γ = 0 (Chow test).

Alternatively, we can estimate the specification:

st = α0(1− Dt) + α1Dt + β0ut−1(1− Dt) + β1ut−1Dt + et .

We can also test a structure change at T ∗ by testing α0 = α1 and

β0 = β1.

C.-M. Kuan (Finance & CRETA, NTU) Classical Least Squares Theory October 24, 2011 63 / 96



Part I: Estimation results with a known change: Without t

T ∗ const Dt ut−1 ut−1Dt R̄2/Reg F Chow

1992 6.97 −3.15 1.40 1.29 0.65 0.58

(2.77∗) (−1.07) 1.15 1.00 19.14∗∗

1993 6.10 −1.74 1.74 0.83 0.64 0.21

(2.51∗) (−0.59) 1.45 0.65 18.40∗∗

1994 5.60 −0.75 1.93 0.52 0.64 0.14

(2.41∗) (−0.25) 1.66 0.41 18.25∗∗

1995 5.38 0.04 2.01 0.31 0.64 0.20

(2.38∗) (0.01) 1.75 0.24 18.36∗∗

Chow test is the F test of the coefficients of Dt and ut−1Dt being zero.
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Part II: Estimation results with a known change: With t

T ∗ const Dt ut−1 t tDt R̄2/Reg F

1992 12.51 −15.61 0.42 −0.55 1.23 0.91

(12.02∗∗) (−8.44∗∗) (1.19) (−5.58∗∗) (8.78∗∗) 74.05∗∗

1993 12.49 −15.48 0.42 −0.54 1.22 0.91

(12.12∗∗) (−8.02∗∗) (1.18) (−6.18∗∗) (8.92∗∗) 74.09∗∗

1994 12.36 −15.26 0.38 −0.50 1.19 0.91

(11.82∗∗) (−7.49∗∗) (1.05) (−6.23∗∗) (8.65∗∗) 70.87∗∗

1995 12.13 −14.83 0.35 −0.45 1.13 0.90

(11.11∗∗) (−6.70∗∗) (0.91) (−5.85∗∗) (8.04∗∗) 63.90∗∗

F test of the coefficients of Dt and tDt being zero: 39.75∗∗ (’92); 39.77∗∗

(’93); 37.68∗∗ (’94); 33.15∗∗ (’95)
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Selected estimation results:

1992 : ŝt = 12.51− 15.61Dt + 0.42 ut−1 − 0.55 t + 1.23 tDt ;

1993 : ŝt = 12.49− 15.48Dt + 0.42 ut−1 − 0.54 t + 1.22 tDt ;

1994 : ŝt = 12.36− 15.26Dt + 0.38 ut−1 − 0.50 t + 1.19 tDt .

There appears to be a structural change over time. For T ∗ = 1993,

the before-change slope is −0.54 (a decrease over time), and the

after-change slope is 0.68 (an increase over time).

The marginal effect of ut−1 on st is not significant even at 10% level.

These models predict the suicide rate in 2010 as 19.83, 19.8 and

19.75, whereas the prediction based on the quadratic trend model is

21.43. For the model with T ∗ = 1993, the difference between the

predicted and actual suicide rates is 3.0 (approx. 690 persons).
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Limitation of the Classical Conditions

[A1] X is non-stochastic: Economic variables can not be regarded as

non-stochastic; also, lagged dependent variables may be used as

regressors.

[A2](i) IE(y) = Xβo : IE(y) may be a linear function with more

regressors or a nonlinear function of regressors.

[A2](ii) var(y) = σ2oIT : The elements of y may be correlated (serial

correlation, spatial correlation) and/or may have unequal variances.

[A3] Normality: y may have a non-normal distribution.

The OLS estimator loses the properties derived before when some of

the classical conditions fail to hold.
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When var(y) 6= σ2
oIT

Given the linear specification y = Xβ + e, suppose, in addition to [A1] and

[A2](i), var(y) = Σo 6= σ2oIT , where Σo is p.d. That is, the elements of y

may be correlated and have unequal variances.

The OLS estimator β̂T remains unbiased with

var(β̂T ) = var((X′X)−1X′y) = (X′X)−1X′ΣoX(X′X)−1.

β̂T is not the BLUE for βo , and it is not the BUE for βo under

normality.

The estimator v̂ar(β̂T ) = σ̂2T (X′X)−1 is a biased estimator for

var(β̂T ). Consequently, the t and F tests do not have t and F

distributions, even when y is normally distributed.

C.-M. Kuan (Finance & CRETA, NTU) Classical Least Squares Theory October 24, 2011 68 / 96



The GLS Estimator

Consider the specification: Gy = GXβ + Ge, where G is nonsingular and

non-stochastic.

IE(Gy) = GXβo and var(Gy) = GΣoG′.

GX has full column rank so that the OLS estimator can be computed:

b(G) = (X′G′GX)−1X′G′Gy,

which is still linear and unbiased. It would be the BLUE provided that

G is chosen such that GΣoG′ = σ2oIT .

Setting G = Σ
−1/2
o , where Σ

−1/2
o = CΛ−1/2C′ and C orthogonally

diagonalizes Σo : C′ΣoC = Λ, we have Σ
−1/2
o ΣoΣ

−1/2′
o = IT .
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With y∗ = Σ
−1/2
o y and X∗ = Σ

−1/2
o X, we have the GLS estimator:

β̂GLS = (X∗′X∗)−1X∗′y∗ = (X′Σ−1o X)−1(X′Σ−1o y). (5)

The β̂GLS is a minimizer of weighted sum of squared errors:

Q(β; Σo) =
1

T
(y∗−X∗β)′(y∗−X∗β) =

1

T
(y−Xβ)′Σ−1o (y−Xβ).

The vector of GLS fitted values, ŷGLS = X(X′Σ−1o X)−1(X′Σ−1o y), is

an oblique projection of y onto span(X), because

X(X′Σ−1o X)−1X′Σ−1o is idempotent but asymmetric. The GLS

residual vector is êGLS = y − ŷGLS.

The sum of squared OLS residuals is less than the sum of squared

GLS residuals. (Why?)
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Stochastic Properties of the GLS Estimator

Theorem 4.1 (Aitken)

Given linear specification (1), suppose that [A1] and [A2](i) hold and that

var(y) = Σo is positive definite. Then, β̂GLS is the BLUE for βo .

Given [A3′] y ∼ N (Xβo ,Σo),

β̂GLS ∼ N
(
βo , (X′Σ−1o X)−1

)
.

Under [A3′], the log likelihood function is

log L(β; Σo) = −T

2
log(2π)−1

2
log(det(Σo))−1

2
(y−Xβ)′Σ−1o (y−Xβ),

with the FOC: X′Σ−1o (y − Xβ) = 0. Thus, the GLS estimator is also

the MLE under normality.
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Under normality, the information matrix is

IE[X′Σ−1o (y − Xβ)(y − Xβ)′Σ−1o X]
∣∣∣
β=βo

= X′Σ−1o X.

Thus, the GLS estimator is the BUE for βo , because its covariance

matrix reaches the Crámer-Rao lower bound.

Under the null hypothesis Rβo = r, we have

(Rβ̂GLS − r)′[R(X′Σ−1o X)−1R′]−1(Rβ̂GLS − r) ∼ χ2(q).

A major difficulty: How should the GLS estimator be computed when

Σo is unknown?
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The Feasible GLS Estimator

The Feasible GLS (FGLS) estimator is

β̂FGLS = (X′Σ̂
−1
T X)−1X′Σ̂

−1
T y,

where Σ̂T is an estimator of Σo .

Further difficulties in FGLS estimation:

The number of parameters in Σo is T (T + 1)/2. Estimating Σo

without some prior restrictions on Σo is practically infeasible.

Even when an estimator Σ̂T is available under certain assumptions, the

finite-sample properties of the FGLS estimator are still difficult to

derive.
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Tests for Heteroskedasticity

A simple form of Σo is

Σo =

[
σ21IT1

0

0 σ22IT2

]
,

with T = T1 + T2; this is known as groupwise heteroskedasticity.

The null hypothesis of homoskedasticity: σ21 = σ22 = σ2o .

Perform separate OLS regressions using the data in each group and

obtain the variance estimates σ̂2T1
and σ̂2T2

.

Under [A1] and [A3′], the F test is:

ϕ :=
σ̂2T1

σ̂2T2

=
(T1 − k)σ̂2T1

σ2o(T1 − k)

/
(T2 − k)σ̂2T2

σ2o(T2 − k)
∼ F (T1 − k ,T2 − k).

C.-M. Kuan (Finance & CRETA, NTU) Classical Least Squares Theory October 24, 2011 74 / 96



More generally, for some constants c0, c1 > 0, σ2t = c0 + c1 x
2
tj .

The Goldfeld-Quandt test:

(1) Rearrange obs. according to the values of xj in a descending order.

(2) Divide the rearranged data set into three groups with T1, Tm, and T2

observations, respectively.

(3) Drop the Tm observations in the middle group and perform separate

OLS regressions using the data in the first and third groups.

(4) The statistic is the ratio of the variance estimates:

σ̂2
T1
/σ̂2

T2
∼ F (T1 − k ,T2 − k).

Some questions:

Can we estimate the model with all observations and then compute σ̂2
T1

and σ̂2
T2

based on T1 and T2 residuals?

If Σo is not diagonal, does the F test above still work?
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GLS and FGLS Estimation

Under groupwise heteroskedasticity,

Σ
−1/2
o =

[
σ−11 IT1

0

0 σ−12 IT2

]
,

so that the transformed specification is[
y1/σ1
y2/σ2

]
=

[
X1/σ1
X2/σ2

]
β +

[
e1/σ1
e2/σ2

]
.

Clearly, var(Σ
−1/2
o y) = IT . The GLS estimator is:

β̂GLS =

[
X′1X1

σ21
+

X′2X2

σ22

]−1 [
X′1y1
σ21

+
X′2y2
σ22

]
.
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With σ̂2T1
and σ̂2T2

from separate regressions, an estimator of Σo is

Σ̂ =

[
σ̂2T1

IT1
0

0 σ̂2T2
IT2

]
.

The FGLS estimator is:

β̂FGLS =

[
X′1X1

σ̂21
+

X′2X2

σ̂22

]−1 [
X′1y1
σ̂21

+
X′2y2
σ̂22

]
.

Note: If σ2t = c x2tj , a transformed specification is

yt
xtj

= βj + β1
1

xtj
+ · · ·+ βj−1

xt,j−1
xtj

+ βj+1

xt,j+1

xtj
+ · · ·+ βk

xtk
xtj

+
et
xtj
,

where var(yt/xtj) = c := σ2o . Here, the GLS estimator is readily computed

as the OLS estimator for the transformed specification.

C.-M. Kuan (Finance & CRETA, NTU) Classical Least Squares Theory October 24, 2011 77 / 96



Discussion and Remarks

How do we determine the “groups” for groupwise heteroskedasticity?

What if the diagonal elements of Σo take multiple values (so that

there are more than 2 groups)?

A general form of heteroskedasticity: σ2t = h(α0 + z′tα1), with h

unknown, zt a p × 1 vector and p a fixed number less than T .

When the F test rejects the null of homoskedasticity, groupwise

heteroskedasticity need not be a correct description of Σo .

When the form of heteroskedasticity is incorrectly specified, the

resulting FGLS estimator may be less efficient than the OLS estimator.

The finite-sample properties of FGLS estimators and hence the exact

tests are typically unknown.
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Serial Correlation

When time series data yt are correlated over time, they are said to

exhibit serial correlation. For cross-section data, the correlations of yt
are known as spatial correlation.

A general form of Σo is that its diagonal elements (variances of yt)

are a constant σ2o , and the off-diagonal elements (cov(yt , yt−i )) are

non-zero.

In the time series context, cov(yt , yt−i ) are known as the

autocovariances of yt , and the autocorrelations of yt are

corr(yt , yt−i ) =
cov(yt , yt−i )√

var(yt)
√

var(yt−i )
=

cov(yt , yt−i )

σ2o
.
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Simple Model: AR(1) Disturbances

A time series yt is said to be weakly (covariance) stationary if its

mean, variance, and autocovariances are all independent of t.

i.i.d. random variables

White noise: A time series with zero mean, a constant variance, and

zero autocovariances.

Disturbance: ε := y − Xβo so that var(y) = var(ε) = IE(εε′).

Suppose that εt follows a weakly stationary AR(1) (autoregressive of

order 1) process:

εt = ψ1εt−1 + ut , |ψ1| < 1,

where {ut} is a white noise with IE(ut) = 0, IE(u2t ) = σ2u, and

IE(utuτ ) = 0 for t 6= τ .
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By recursive substitution,

εt =
∞∑
i=0

ψi
1ut−i ,

a weighted sum of current and previous “innovations” (shocks). This is a

stationary process because:

IE(εt) = 0, var(εt) =
∑∞

i=0 ψ
2i
1 σ

2
u = σ2u/(1− ψ2

1), and

cov(εt , εt−1) = ψ1 IE(ε2t−1) = ψ1σ
2
u/(1− ψ2

1),

so that corr(εt , εt−1) = ψ1.

cov(εt , εt−2) = ψ1 cov(εt−1, εt−2) so that corr(εt , εt−2) = ψ2
1. Thus,

corr(εt , εt−i ) = ψ1 corr(εt−1, εt−i ) = ψi
1,

which depend only on i , but not on t.
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The variance-covariance matrix var(y) is thus

Σo = σ2o



1 ψ1 ψ2
1 · · · ψT−1

1

ψ1 1 ψ1 · · · ψT−2
1

ψ2
1 ψ1 1 · · · ψT−3

1
...

...
...

. . .
...

ψT−1
1 ψT−2

1 ψT−3
1 · · · 1


,

with σ2o = σ2u/(1− ψ2
1). Note that all off-diagonal elements of this matrix

are non-zero, but there are only two unknown parameters.
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A transformation matrix for GLS estimation is the following Σ
−1/2
o :

1

σo



1 0 0 · · · 0 0

− ψ1√
1−ψ2

1

1√
1−ψ2

1

0 · · · 0 0

0 − ψ1√
1−ψ2

1

1√
1−ψ2

1

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1√
1−ψ2

1

0

0 0 0 · · · − ψ1√
1−ψ2

1

1√
1−ψ2

1


.

Any matrix that is a constant proportion to Σ
−1/2
o can also serve as a

legitimate transformation matrix for GLS estimation
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The Cochrane-Orcutt Transformation is based on:

V
−1/2
o = σo

√
1− ψ2

1 Σ
−1/2
o =



√
1− ψ2

1 0 0 · · · 0 0

−ψ1 1 0 · · · 0 0

0 −ψ1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · −ψ1 1


,

which depends only on the single parameter ψ1. The resulting transformed

data are: y∗ = V
−1/2
o y and X∗ = V

−1/2
o X with

y∗1 = (1− ψ2
1)1/2y1, x∗1 = (1− ψ2

1)1/2x1,

y∗t = yt − ψ1yt−1, x∗t = xt − ψ1xt−1, t = 2, · · · ,T ,

where xt is the t th column of X′.
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Model Extensions

Extension to AR(p) process:

εt = ψ1εt−1 + · · ·+ ψpεt−p + ut ,

where ψ1, . . . , ψp must be restricted to ensure weak stationarity.

MA(1) (moving average of order 1) process:

εt = ut − π1ut−1, |π1| < 1,

where {ut} is a white noise.

IE(εt) = 0, var(εt) = (1 + π2
1)σ2

u.

cov(εt , εt−1) = −π1σ2
u, and cov(εt , εt−i ) = 0 for i ≥ 2.

MA(q) Process: εt = ut − π1ut−1 − · · · − πqut−q.
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Tests for AR(1) Disturbances

Under AR(1), the null hypothesis is ψ1 = 0. A natural estimator of ψ1 is

the OLS estimator of regressing êt on êt−1:

ψ̂T =

∑T
t=2 êt êt−1∑T
t=2 ê

2
t−1

.

The Durbin-Watson statistic is

d =

∑T
t=2(êt − êt−1)2∑T

t=1 ê
2
t

.

When the sample size T is large, it can be seen that

d = 2− 2ψ̂T

∑T
t=2 ê

2
t−1∑T

t=1 ê
2
t

− ê21 + ê2T∑T
t=1 ê

2
t

≈ 2(1− ψ̂T ).
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For 0 < ψ̂T ≤ 1 (−1 ≤ ψ̂T < 0), 0 ≤ d < 2 (2 < d ≤ 4), there may

be positive (negative) serial correlation. Hence, d essentially checks

whether ψ̂T is “close” to zero (i.e., d is “close” to 2).

Difficulty: The exact null distribution of d holds only under the

classical conditions [A1] and [A3] and depends on the data matrix X.

Thus, the critical values for d can not be tabulated, and this test is

not pivotal.

The null distribution of d lies between a lower bound (dL) and an

upper bound (dU):

d∗L,α < d∗α < d∗U,α.

The distributions of dL and dU are not data dependent, so that their

critical values d∗L,α and d∗U,α can be tabulated.
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Durbin-Watson test:

(1) Reject the null if d < d∗L,α (d > 4− d∗L,α).

(2) Do not reject the null if d > d∗U,α (d < 4− d∗U,α).

(3) Test is inconclusive if d∗L,α < d < d∗U,α (4− d∗L,α > d > 4− d∗U,α).

For the specification yt = β1 + β2xt2 + · · ·+ βkxtk + γyt−1 + et ,

Durbin’s h statistic is

h = γ̂T

√
T

1− T v̂ar(γ̂T )
≈ N (0, 1),

where γ̂T is the OLS estimate of γ with v̂ar(γ̂T ) the OLS estimate of

var(γ̂T ).

Note: v̂ar(γ̂T ) can not be greater 1/T . (Why?)
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FGLS Estimation

Notations: Write Σ(σ2, ψ) and V(ψ), so that Σo = Σ(σ2o , ψ1) and

Vo = V(ψ1). Based on V(ψ)−1/2, we have

y1(ψ) = (1− ψ2)1/2y1, x1(ψ) = (1− ψ2)1/2x1,

yt(ψ) = yt − ψyt−1, xt(ψ) = xt − ψxt−1, t = 2, · · · ,T .

Iterative FGLS Estimation:

(1) Perform OLS estimation and compute ψ̂T using the OLS residuals êt .

(2) Perform the Cochrane-Orcutt transformation based on ψ̂T and compute

the resulting FGLS estimate β̂FGLS by regressing yt(ψ̂T ) on xt(ψ̂T ).

(3) Compute a new ψ̂T with êt replaced by êt,FGLS = yt − x′t β̂FGLS.

(4) Repeat steps (2) and (3) until ψ̂T converges numerically.

Steps (1) and (2) suffice for FGLS estimation; more iterations may

improve the performance in finite samples.
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Instead of estimating ψ̂T based on OLS residuals, the Hildreth-Lu

procedure adopts grid search to find a suitable ψ ∈ (−1, 1).

For a ψ in (−1, 1), conduct the Cochrane-Orcutt transformation and

compute the resulting FGLS estimate (by regressing yt(ψ) on xt(ψ))

and the ESS based on the FGLS residuals.

Try every ψ on the grid; a ψ is chosen if the corresponding ESS is the

smallest.

The results depend on the grid.

Note: This method is computationally intensive and difficult to apply

when εt follow an AR(p) process with p > 2.
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Application: Linear Probability Model

Consider binary y with y = 1 or 0.

Under [A1] and [A2](i), IE(yt) = IP(yt = 1) = x′tβo ; this is known as

the linear probability model.

Problems with the linear probability model:

Under [A1] and [A2](i), there is heteroskedasticity:

var(yt) = x′tβo(1− x′tβo),

and hence the OLS estimator is not the BLUE for βo .

The OLS fitted values x′t β̂T need not be bounded between 0 and 1.
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An FGLS estimator may be obtained using

Σ̂
−1/2
T = diag

[
[x′1β̂T (1− x′1β̂T )]−1/2, . . . ,

[x′T β̂T (1− x′T β̂T )]−1/2
]
.

Problems with FGLS estimation:

Σ̂
−1/2
T can not be computed if x′t β̂T is not bounded between 0 and 1.

Even when Σ̂
−1/2
T is available, there is no guarantee that the FGLS

fitted values are bounded between 0 and 1.

The finite-sample properties of the FGLS estimator are unknown.

A key issue: A linear model here fails to take into account data

characteristics.
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Application: Seemingly Unrelated Regressions

To study the joint behavior of several dependent variables, consider a

system of N equations, each with ki explanatory variables and T obs:

yi = Xiβi + ei , i = 1, 2, . . . ,N.

Stacking these equations yields Seemingly unrelated regressions (SUR):
y1
y2
...

yN


︸ ︷︷ ︸

y

=


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XN


︸ ︷︷ ︸

X


β1

β2
...

βN


︸ ︷︷ ︸

β

+


e1
e2
...

eN


︸ ︷︷ ︸

e

.

where y is TN × 1, X is TN ×∑N
i=1 ki , and β is

∑N
i=1 ki × 1.
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Suppose yit and yjt are contemporaneously correlated, but yit and yjτ
are serially uncorrelated, i.e., cov(yi , yj) = σij IT .

For this system, Σo = So ⊗ IT with

So =


σ21 σ12 · · · σ1N
σ21 σ22 · · · σ2N

...
...

. . .
...

σN1 σN2 · · · σ2N

 ;

that is, the SUR system has both serial and spatial correlations.

As Σ−1o = S−1o ⊗ IT , then

β̂GLS = [X′(S−1o ⊗ IT )X]−1X′(S−1o ⊗ IT )y,

and its covariance matrix is [X′(S−1o ⊗ IT )X]−1.
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Remarks:

When σij = 0 for i 6= j , So is diagonal, and so is Σo . Then, the GLS

estimator for each βi reduces to the corresponding OLS estimator, so

that joint estimation of N equations is not necessary.

If all equations in the system have the same regressors, i.e., Xi = X0

(say) and X = IN ⊗X0, the GLS estimator is also the same as the OLS

estimator.

More generally, there would not be much efficiency gain for GLS

estimation if yi and yj are less correlated and/or Xi and Xj are highly

correlated.

The FGLS estimator can be computed as

β̂FGLS = [X′(Ŝ
−1
TN ⊗ IT )X]−1X′(Ŝ

−1
TN ⊗ IT )y.
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ŜTN is an N × N matrix:

ŜTN =
1

T


ê′1
ê′2
...

ê′N


[

ê1 ê2 . . . êN

]
,

where êi is the OLS residual vector of the i th equation.

The estimator ŜTN is valid provided that var(yi ) = σ2i IT and

cov(yi , yj) = σij IT . Without these assumptions, FGLS estimation

would be more complicated.

Again, the finite-sample properties of the FGLS estimator are

unknown.
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