DIFFERENTIAL GEOMETRY II: HOMEWORK 8

DUE MAY 5

(1) Prove the Poincaré inequality: there exists a constant $c>0$ such that for any $f \in$ $C^{\infty}(D)$ with $\left.f\right|_{\partial D}=0$ satisfies

$$
\int_{D}|f|^{2} \mathrm{~d} x \mathrm{~d} y \leq c \int_{D}|D f|^{2} \mathrm{~d} x \mathrm{~d} y .
$$

(2) For $a d-b c=1$, let

$$
\varphi(z)=\frac{a z+b}{c z+d} .
$$

Verify that for any $u: \bar{D} \rightarrow \mathbb{R}^{N}, E(u)=E(u \circ \varphi)$.
(3) Given $\Gamma \subset \mathbb{R}^{N}$, let $u: \bar{D} \rightarrow \mathbb{R}^{N}$ be solution to the Plateau problem given by Douglas. Let

$$
S_{u}=\{p \in D: D u(p)=0\}
$$

be its branch locus.
(a) Show that the branch locus is discrete.
(b) Given a example with non-empty S_{u}. You are free to choose Γ.

