DIFFERENTIAL GEOMETRY II: HOMEWORK 6

DUE APRIL 7

(1) Consider the hyperbolic space: $B^{n}=\left\{\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}:|x|^{2}=\sum_{j=1}^{n}\left(x^{j}\right)^{2}<1\right\}$ with the metric

$$
\frac{4}{\left(1-|x|^{2}\right)^{2}} \sum_{j=1}^{n}\left(\mathrm{~d} x^{j}\right)^{2}
$$

Does it contain non-trivial compact minimal submanifolds? Give your reason.
Hint: Its isometry group acts transitively.
(2) Consider $\mathbb{R}^{3} \oplus \mathbb{R}^{3} \cong \mathbb{C}^{3}$. Denote its coordinate by x^{1}, x^{2}, x^{3} and y^{1}, y^{2}, y^{3}. Let g be the standard metric, and let

$$
\omega=\mathrm{d} x^{1} \wedge \mathrm{~d} y^{1}+\mathrm{d} x^{2} \wedge \mathrm{~d} y^{2}+\mathrm{d} x^{3} \wedge \mathrm{~d} y^{3}
$$

Let J be the endomorphism of $T \mathbb{C}^{3}$ given by

$$
J\left(\frac{\partial}{\partial x^{j}}\right)=\frac{\partial}{\partial y^{j}} \quad \text { and } \quad J\left(\frac{\partial}{\partial y^{j}}\right)=-\frac{\partial}{\partial x^{j}}
$$

for $j=1,2,3$. Note that $J^{2}=-\mathbf{I}$,

$$
\begin{aligned}
& g(U, V)=\omega(U, J V)=-\omega(J U, V) \\
& \omega(U, V)=g(J U, V)=-g(U, J V)
\end{aligned}
$$

for any vectors U, V.
For a collection of vectors U_{1}, \ldots, U_{k}, denote by $\left|U_{1} \wedge \cdots \wedge U_{k}\right|$ the volume of the k-parallelotope spanned by them.
(a) For any U_{1}, U_{2}, U_{3}, show that

$$
\left|U_{1} \wedge U_{2} \wedge U_{3} \wedge J\left(U_{1}\right) \wedge J\left(U_{2}\right) \wedge J\left(U_{3}\right)\right| \leq\left|U_{1} \wedge U_{2} \wedge U_{3}\right|^{2}
$$

and the equality holds if and only if ω vanishes on the 3 -space spanned by U_{1}, U_{2}, U_{3}.
(b) Let

$$
\alpha=\operatorname{Re}\left(\mathrm{d} z^{1} \wedge \mathrm{~d} z^{2} \wedge \mathrm{~d} z^{3}\right) \quad \text { and } \quad \beta=\operatorname{Im}\left(\mathrm{d} z^{1} \wedge \mathrm{~d} z^{2} \wedge \mathrm{~d} z^{3}\right)
$$

where $\mathrm{d} z^{j}=\mathrm{d} x^{j}+i \mathrm{~d} y^{j}$. For any U_{1}, U_{2}, U_{3}, show that

$$
\begin{aligned}
& {\left[\alpha\left(U_{1}, U_{2}, U_{3}\right)\right]^{2}+\left[\beta\left(U_{1}, U_{2}, U_{3}\right)\right]^{2} } \\
= & \left|U_{1} \wedge U_{2} \wedge U_{3} \wedge J\left(U_{1}\right) \wedge J\left(U_{2}\right) \wedge J\left(U_{3}\right)\right|
\end{aligned}
$$

(c) Show that for any U_{1}, U_{2}, U_{3}

$$
\left|\beta\left(U_{1}, U_{2}, U_{3}\right)\right| \leq\left|U_{1} \wedge U_{2} \wedge U_{3}\right| .
$$

Moreover, the equality holds if and only if

- $\alpha\left(U_{1}, U_{2}, U_{3}\right)=0$ and
- ω vanishes on the 3 -space spanned by U_{1}, U_{2}, U_{3}.

It is clear that $\mathrm{d} \beta=0$. With the Stokes theorem, one can show that a 3 -dimensional submanifold L satisfying $\left.\beta\right|_{L}=\left.\operatorname{dvol}\right|_{L}$ must be a volume minimizer within its homology class. In particular, it is a minimal submanifold. This exercise says that the condition is equivalent to that $\left.\omega\right|_{L}$ and $\left.\alpha\right|_{L}$ both vanish.
Remark. $n=3$ plays no role here. It works in any dimension.

