DIFFERENTIAL GEOMETRY II: HOMEWORK 5

DUE MARCH 31

- (1) Compute the Euler class of the tangent bundle of S^4 by using the standard round metric of radius 1, and evaluate its integral over S^4 .
- (2) Let $E \to M$ be a real vector bundle of rank k, and let ∇ be a connection on E. Fix a point $O \in M$, and choose a coordinate chart at O. By doing so, we may pretend that everything happens on a ball at the origin in \mathbb{R}^n . Construct a local trivialization of E as follows.
 - Choose a basis $\{e_1, \cdots, e_k\}$ for $E|_0$.
 - Parallel transport $\{e_1, \dots, e_k\}$ along radial line segments emanating from the origin.

• It gives a local frame for E. One can show its smoothness by the ODE theory. With respect to this trivialization, write $\nabla = d + \sum_{i=1}^{n} A_i(x) dx^i$, where each $A_i(x)$ is an $M(k \times k, \mathbb{R})$ -valued function.

(a) What is the M(k × k, ℝ)-valued function ∑ⁿ_{i=1} xⁱA_i(x)? Give your reason.
(b) Let

$$F_{ij} = \partial_i A_j - \partial_j A_i + [A_i, A_j] \, .$$

Show that

$$A_{i}(x) = \int_{0}^{1} \sum_{j=1}^{n} s \, x^{j} \, F_{ji}(sx) \, \mathrm{d}s$$

for i = 1, ..., n. In particular, $A_i(0) = 0$, and $(dF_{ij})(0) = 0$.

- (3) Given a *complex* vector bundle $E \to M$ of rank k, one can form a *real* vector bundle $E_0 \to M$ of rank 2k by *forgetting the complex structure*.
 - (a) To be more precise, write the transition of E as the real and imaginary part, $\operatorname{GL}(k,\mathbb{C}) \ni g_{\alpha\beta} = u_{\alpha\beta} + iv_{\alpha\beta}$. Verify that

$$\begin{bmatrix} u_{\alpha\beta} & -v_{\alpha\beta} \\ v_{\alpha\beta} & u_{\alpha\beta} \end{bmatrix} \in \mathrm{GL}(2k,\mathbb{R}) \ ,$$

and satisfies the cocycle condition. It defines the bundle E_0 .

(b) Consider \mathbb{R}^{2k} with a basis e_1, \dots, e_{2k} . For $\mathbb{R}^{2k} \otimes \mathbb{C} \cong \mathbb{C}^{2k}, e_1, \dots, e_{2k}$ is also a basis (over \mathbb{C}). On the other hand, $\{e_j - ie_{j+k}\}_{j=1}^k \cup \{e_j + ie_{j+k}\}_{j=1}^k$ is also a basis for

 \mathbb{C}^{2k} . Construct two *complex* vector subbundles of $E_0 \otimes \mathbb{C}$ by this choice of basis. Explain their relations to the original complex bundle E.

- (c) Show that $p_1(E_0) = c_1(E) \wedge c_1(E) 2c_2(E)$.
- (4) The mean curvature vector of Σ in (M, \bar{g}) is the trace of the second fundamental form:

$$\vec{H} = \operatorname{tr}_g(\operatorname{II}) = g^{ij} h_{ij}^{\alpha} H_{\alpha}$$

Consider the Clifford torus

$$\Sigma = \{\frac{1}{\sqrt{2}}(\cos\theta, \sin\theta, \cos\varphi, \sin\varphi) \in \mathbb{R}^4\}.$$

- (a) Compute the mean curvature vector of $\Sigma \subset \mathbb{R}^4$.
- (b) Compute the mean curvature vector of $\Sigma \in S^3$.