DIFFERENTIAL GEOMETRY II: HOMEWORK 5

DUE MARCH 31

(1) Compute the Euler class of the tangent bundle of S^{4} by using the standard round metric of radius 1 , and evaluate its integral over S^{4}.
(2) Let $E \rightarrow M$ be a real vector bundle of rank k, and let ∇ be a connection on E. Fix a point $O \in M$, and choose a coordinate chart at O. By doing so, we may pretend that everything happens on a ball at the origin in \mathbb{R}^{n}. Construct a local trivialization of E as follows.

- Choose a basis $\left\{e_{1}, \cdots, e_{k}\right\}$ for $\left.E\right|_{0}$.
- Parallel transport $\left\{e_{1}, \cdots, e_{k}\right\}$ along radial line segments emanating from the origin.
- It gives a local frame for E. One can show its smoothness by the ODE theory.

With respect to this trivialization, write $\nabla=\mathrm{d}+\sum_{i=1}^{n} A_{i}(x) \mathrm{d} x^{i}$, where each $A_{i}(x)$ is an $\mathrm{M}(k \times k, \mathbb{R})$-valued function.
(a) What is the $\mathrm{M}(k \times k, \mathbb{R})$-valued function $\sum_{i=1}^{n} x^{i} A_{i}(x)$? Give your reason.
(b) Let

$$
F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right] .
$$

Show that

$$
A_{i}(x)=\int_{0}^{1} \sum_{j=1}^{n} s x^{j} F_{j i}(s x) \mathrm{d} s
$$

for $i=1, \ldots, n$.
In particular, $A_{i}(0)=0$, and $\left(\mathrm{d} F_{i j}\right)(0)=0$.
(3) Given a complex vector bundle $E \rightarrow M$ of rank k, one can form a real vector bundle $E_{0} \rightarrow M$ of rank $2 k$ by forgetting the complex structure.
(a) To be more precise, write the transition of E as the real and imaginary part, $\mathrm{GL}(k, \mathbb{C}) \ni g_{\alpha \beta}=u_{\alpha \beta}+i v_{\alpha \beta}$. Verify that

$$
\left[\begin{array}{cc}
u_{\alpha \beta} & -v_{\alpha \beta} \\
v_{\alpha \beta} & u_{\alpha \beta}
\end{array}\right] \in \mathrm{GL}(2 k, \mathbb{R})
$$

and satisfies the cocycle condition. It defines the bundle E_{0}.
(b) Consider $\mathbb{R}^{2 k}$ with a basis $e_{1}, \cdots, e_{2 k}$. For $\mathbb{R}^{2 k} \otimes \mathbb{C} \cong \mathbb{C}^{2 k}, e_{1}, \cdots, e_{2 k}$ is also a basis (over \mathbb{C}). On the other hand, $\left\{e_{j}-i e_{j+k}\right\}_{j=1}^{k} \cup\left\{e_{j}+i e_{j+k}\right\}_{j=1}^{k}$ is also a basis for
$\mathbb{C}^{2 k}$. Construct two complex vector subbundles of $E_{0} \otimes \mathbb{C}$ by this choice of basis. Explain their relations to the original complex bundle E.
(c) Show that $p_{1}\left(E_{0}\right)=c_{1}(E) \wedge c_{1}(E)-2 c_{2}(E)$.
(4) The mean curvature vector of Σ in (M, \bar{g}) is the trace of the second fundamental form:

$$
\vec{H}=\operatorname{tr}_{g}(\mathrm{II})=g^{i j} h_{i j}^{\alpha} H_{\alpha} .
$$

Consider the Clifford torus

$$
\Sigma=\left\{\frac{1}{\sqrt{2}}(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi) \in \mathbb{R}^{4}\right\} .
$$

(a) Compute the mean curvature vector of $\Sigma \subset \mathbb{R}^{4}$.
(b) Compute the mean curvature vector of $\Sigma \in S^{3}$.

