DIFFERENTIAL GEOMETRY II: HOMEWORK 4

DUE MARCH 24

(1) For a complex vector bundle $E \rightarrow M$, the total Chern class is defined to be

$$
c(E)=\operatorname{det}\left(\mathbf{I}+\frac{i}{2 \pi} F_{\nabla}\right)=1+c_{1}(E)+c_{2}(E)+\cdots \in \bigoplus_{j \in \mathbb{N}} \mathrm{H}_{\mathrm{dR}}^{2 j}(M) .
$$

Suppose that E, F are two complex vector bundles over M. Prove that

$$
c(E \oplus F)=c(E) \wedge c(F) .
$$

Namely, $c_{j}(E \oplus F)=\sum_{\ell=0}^{j} c_{\ell}(E) \wedge c_{j-\ell}(F) \in \mathrm{H}_{\mathrm{dR}}^{2 j}(M)$, where c_{0} is set to be 1 .
(2) For a complex vector bundle $E \rightarrow M$, let E^{*} be its dual bundle. Prove that $c_{j}\left(E^{*}\right)=$ $(-1)^{j} c_{j}(E)$.

For instance, if $c_{1}(E) \neq 0 \in \mathrm{H}_{\mathrm{dR}}^{2}(M), E$ and E^{*} will not be isomorphic.
(3) On a closed, oriented surface Σ, choose a point p, and a coordinate neighborhood of p, \mathcal{U}. Assume that $\mathrm{d} x \wedge \mathrm{~d} y$ is the (positive) orientation. Let $\mathcal{V}=\Sigma \backslash\{p\}$

For any $n \in \mathbb{Z}$, consider the complex line bundle L_{n} given by

$$
g_{\mathcal{U V}}=(z /|z|)^{n}
$$

where $z=x+i y$. Evaluate $\int_{\Sigma} c_{1}\left(L_{n}\right)$.
(4) Consider the following coordinate cover for $M=\mathbb{C P}^{2}$:

$$
\begin{aligned}
\mathcal{U} & =\left\{\left[\left(1, u_{2}, u_{3}\right)\right]:\left(u_{2}, u_{3}\right) \in \mathbb{C}^{2}\right\}, \\
\mathcal{V} & =\left\{\left[\left(v_{1}, 1, v_{3}\right)\right]:\left(v_{1}, v_{3}\right) \in \mathbb{C}^{2}\right\}, \\
\mathcal{W} & =\left\{\left[\left(w_{1}, w_{2}, 1\right)\right]:\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}\right\} .
\end{aligned}
$$

Let $N=\left\{[(x, y, 0)]:(x, y) \in \mathbb{C}^{2} \backslash\{0\}\right\} \cong \mathbb{C P}^{1}$. Note that $M=\mathcal{W} \amalg N \cong \mathbb{C}^{2} \amalg \mathbb{C P}$. In means that M can be regarded as a compatification of $\mathcal{W} \cong \mathbb{C}^{2}$ by adding a $\mathbb{C P}^{1}$, the space of complex directions in \mathbb{C}^{2}, at infinity.
(a) Construct a complex line bundle L over M by the following requirement: It has a global section $\underline{s} \in \Gamma(E)$, which is u_{3} over \mathcal{U}, v_{3} over \mathcal{V}, and 1 over \mathcal{W} (with respect to some trivializations).
It follows that the zero locus of \underline{s} is N.
(b) Construct a connection ∇ on L, and compute its curvature F^{∇}.
(c) Evaluate $\int_{N} c_{1}(L)$.
(d) In part (b), is it possible to choose ∇ such that F^{∇} only supports on a tubular neighborhood of N. Specifically,

$$
\operatorname{supp}\left(F^{\nabla}\right) \cap\left\{\left[\left(w_{1}, w_{1}, 1\right)\right]:\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}<R^{2}\right\}=\varnothing
$$

for some $R>0$.
(5) Let A be a square-matrix valued 1-form, and denote $\mathrm{d} A+A \wedge A$ by F. Verify that

$$
\operatorname{tr}(F \wedge F)=\mathrm{d}\left[\operatorname{tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)\right]
$$

Remark. To construct the right hand side of (\dagger, apply the argument on the invariance of the characteristic class in the de Rham cohomology. Specifically, consider $\mathrm{d}+t A$.

