DIFFERENTIAL GEOMETRY II: HOMEWORK 2

DUE MARCH 10

(1) Polar Decomposition for $\mathrm{GL}(n ; \mathbb{C})$.
(a) Show that any $G \in \operatorname{GL}(n ; \mathbb{C})$ has a unique decomposition as $G=U P$ where U is unitary, and P is hermitian, positive-definite.
(b) The space of all $n \times n$ hermitian matrices can be identified with $\mathbb{R}^{n^{2}}$. Positivedefinite ones form an open subset in it. Prove that the space of all $n \times n$ hermitian, positive-definite matrices is contractible.
(Check the definition of "contractible" from wikipedia or any topology textbook. A "contractible" space is usually regarded as having "trivial topology".)
(2) Given a complex vector bundle $E \xrightarrow{\pi} M$, one can construct its dual bundle $E^{*} \rightarrow M$, and its conjugate bundle $\bar{E} \rightarrow M$. Show that the dual of the conjugate of E is isomorphic to itself, $(\bar{E})^{*} \cong E$.
(3) A local trivialization, $\left.E\right|_{\mathcal{U}} \cong \mathcal{U} \times \mathbb{R}^{k}$, is equivalent to local trivializing sections, $\left\{\mathfrak{s}_{\mu}\right\}_{\mu=1}^{k}$. Each section \mathfrak{s}_{μ} corresponds to the standard basis \mathfrak{e}_{μ} for \mathbb{R}^{k}. Given a connection ∇, $\nabla \mathfrak{s}_{\nu}$ can be expressed as a linear combination of $\left\{\mathfrak{s}_{\mu}\right\}_{\mu=1}^{k}$, with the coefficients being 1 -forms on \mathcal{U}. Namely,

$$
\nabla \mathfrak{s}_{\nu}=\sum_{\mu=1}^{k} \omega_{\nu}^{\mu} \otimes \mathfrak{s}_{\mu} \quad \text { where } \omega_{\nu}^{\mu} \in \Omega^{1}(\mathcal{U}) .
$$

The expression is a section of $T^{*} M \otimes E$ over \mathcal{U}. Sometimes \otimes is omitted.
Any local section can be expressed as $\sum_{\mu=1}^{k} \alpha^{\mu} \mathfrak{s}_{\mu}$ where $\alpha^{\mu} \in \mathcal{C}^{\infty}(\mathcal{U})$. Due to the properties of a connection,

$$
\begin{aligned}
\nabla\left(\sum_{\mu=1}^{k} \alpha^{\mu} \mathfrak{s}_{\mu}\right) & =\sum_{\mu=1}^{k}\left(\mathrm{~d} \alpha^{\mu}\right) \mathfrak{s}_{\mu}+\sum_{\mu=1}^{k} \alpha^{\mu} \nabla_{\mathfrak{s}_{\mu}} \\
& =\sum_{\mu=1}^{k}\left(\mathrm{~d} \alpha^{\mu}\right) \mathfrak{s}_{\mu}+\sum_{\mu, \nu}^{k} \alpha^{\nu} \omega_{\nu}^{\mu} \mathfrak{s}_{\mu}=\sum_{\mu=1}^{k}\left(\sum_{\nu=1}^{k} \mathrm{~d} \alpha^{\mu}+\omega_{\nu}^{\mu} \alpha^{\nu}\right) \mathfrak{s}_{\mu} .
\end{aligned}
$$

That is to say, ∇ in terms of the trivialization is $\mathrm{d}+\left[\omega_{\nu}^{\mu}\right]$ acting on \mathbb{R}^{k}-valued functions. (a) Endow E a bundle metric. A connection ∇ is called a metric connection if

$$
\mathrm{d}\langle s, \tilde{s}\rangle=\langle\nabla s, \tilde{s}\rangle+\langle s, \nabla \tilde{s}\rangle
$$

for any two $s, \tilde{s} \in \Gamma(E))^{1}$. Prove that a metric connection always exists.
(b) Does the metric connection unique? Give your reason.
(c) Suppose that E is a real vector bundle with a bundle metric and a metric connection. In terms of an orthonormal, local trivializing sections, what can you say about the matrix-valued 1-form $\left[\omega_{\nu}^{\mu}\right]$?

[^0]
[^0]: ${ }^{1}$ The notation $\Gamma(E)$ is the space of all smooth sections.

