DIFFERENTIAL GEOMETRY II: HOMEWORK 2

DUE MARCH 10

- (1) Polar Decomposition for $GL(n; \mathbb{C})$.
 - (a) Show that any $G \in GL(n; \mathbb{C})$ has a unique decomposition as G = UP where U is unitary, and P is hermitian, positive-definite.
 - (b) The space of all n × n hermitian matrices can be identified with R^{n²}. Positive-definite ones form an open subset in it. Prove that the space of all n × n hermitian, positive-definite matrices is contractible. (Check the definition of "contractible" from wikipedia or any topology textbook.

A "contractible" space is usually regarded as having "trivial topology".)

- (2) Given a *complex* vector bundle $E \xrightarrow{\pi} M$, one can construct its dual bundle $E^* \to M$, and its conjugate bundle $\overline{E} \to M$. Show that the dual of the conjugate of E is isomorphic to itself, $(\overline{E})^* \cong E$.
- (3) A local trivialization, $E|_{\mathcal{U}} \cong \mathcal{U} \times \mathbb{R}^k$, is equivalent to local trivializing sections, $\{\mathfrak{s}_{\mu}\}_{\mu=1}^k$. Each section \mathfrak{s}_{μ} corresponds to the standard basis \mathfrak{e}_{μ} for \mathbb{R}^k . Given a connection ∇ , $\nabla \mathfrak{s}_{\nu}$ can be expressed as a linear combination of $\{\mathfrak{s}_{\mu}\}_{\mu=1}^k$, with the coefficients being 1-forms on \mathcal{U} . Namely,

$$abla \mathfrak{s}_{
u} = \sum_{\mu=1}^{k} \omega_{
u}^{\mu} \otimes \mathfrak{s}_{\mu} \quad ext{where } \omega_{
u}^{\mu} \in \Omega^{1}(\mathcal{U}) \;.$$

The expression is a section of $T^*M \otimes E$ over \mathcal{U} . Sometimes \otimes is omitted.

Any local section can be expressed as $\sum_{\mu=1}^{k} \alpha^{\mu} \mathfrak{s}_{\mu}$ where $\alpha^{\mu} \in \mathcal{C}^{\infty}(\mathcal{U})$. Due to the properties of a connection,

$$\nabla (\sum_{\mu=1}^{k} \alpha^{\mu} \mathfrak{s}_{\mu}) = \sum_{\mu=1}^{k} (\mathrm{d}\alpha^{\mu}) \mathfrak{s}_{\mu} + \sum_{\mu=1}^{k} \alpha^{\mu} \nabla \mathfrak{s}_{\mu}$$
$$= \sum_{\mu=1}^{k} (\mathrm{d}\alpha^{\mu}) \mathfrak{s}_{\mu} + \sum_{\mu,\nu}^{k} \alpha^{\nu} \omega_{\nu}^{\mu} \mathfrak{s}_{\mu} = \sum_{\mu=1}^{k} (\sum_{\nu=1}^{k} \mathrm{d}\alpha^{\mu} + \omega_{\nu}^{\mu} \alpha^{\nu}) \mathfrak{s}_{\mu} .$$

That is to say, ∇ in terms of the trivialization is $d + [\omega_{\nu}^{\mu}]$ acting on \mathbb{R}^{k} -valued functions. (a) Endow *E* a bundle metric. A connection ∇ is called a *metric connection* if

$$\mathrm{d}\langle s,\tilde{s}\rangle = \langle \nabla s,\tilde{s}\rangle + \langle s,\nabla\tilde{s}\rangle$$

for any two $s, \tilde{s} \in \Gamma(E)^1$. Prove that a metric connection always exists.

- (b) Does the metric connection unique? Give your reason.
- (c) Suppose that E is a real vector bundle with a bundle metric and a metric connection. In terms of an *orthonormal*, local trivializing sections, what can you say about the matrix-valued 1-form $[\omega_{\nu}^{\mu}]$?

¹The notation $\Gamma(E)$ is the space of all smooth sections.