DIFFERENTIAL GEOMETRY II: HOMEWORK 1

DUE MARCH 3

- (1) Consider $\mathbb{CP}^1 = \{ \text{complex lines in } \mathbb{C}^2 \}$. It is the one-point compactification of \mathbb{C} , and is diffeomorphic to \mathbb{S}^2 .
 - (a) Define analogously the tautological (complex) line bundle E over \mathbb{CP}^1 .
 - (b) Recall that $\mathbb{CP}^1 = \frac{\mathbb{C} \cup \mathbb{C}}{z \sim w = z^{-1}}$. In terms of this coordinate cover, work out the transition function of the tautological bundle.
- (2) Consider the unit sphere in \mathbb{R}^{n+1} , $S^n \subset \mathbb{R}^{n+1}$. Show that $TS^n \oplus \underline{\mathbb{R}}$ is isomorphic to \mathbb{R}^{n+1} .

The notation \oplus means the direct sum of vector bundles. Specifically, suppose that E has transition $g_{\mathcal{UV}}$. Then, $E \oplus \mathbb{R}$ has transition

$$\begin{bmatrix} g_{\mathcal{U}\mathcal{V}} & 0 \\ 0 & 1 \end{bmatrix}$$

- (3) The Grassmannian $\operatorname{Gr}(k, n)$, the space of all k-planes in \mathbb{R}^n , is a smooth manifold of dimension k(n-k).
 - (a) Define analogously the tautological vector bundle E over the Grassmannian Gr(k, n).
 - (b) What is the dimension of E, as a smooth manifold? Give your reason.
 - (c) For Gr(2, 4), work out its local trivializations over *two* coordinate charts, and find the transition functions g_{UV} .

(4) Suppose that $E \xrightarrow{\pi} M$ is a real vector bundle of rank k. Let

$$E \times_M E = \{(e_1, e_2) \in E \times E \mid \pi(e_1) = \pi(e_2)\}$$
.

Namely, it associates $E_p \times E_p$ for every $p \in M$. Locally, $E|_{\mathcal{U}} = \mathcal{U} \times \mathbb{R}^k$, $E|_{\mathcal{U}} \times E|_{\mathcal{U}} = (\mathcal{U} \times \mathbb{R}^k) \times (\mathcal{U} \times \mathbb{R}^k)$, and $(E \times E)|_{\mathcal{U}} = \mathcal{U} \times \mathbb{R}^k \times \mathbb{R}^k$.

A bundle metric is a smooth map $\mathfrak{g}: E \times_M E \to \mathbb{R}$ which defines a inner product on E_p for every p.

(a) Show that any (real) vector bundle always admits a bundle metric. (But it is never unique.)

(b) Prove that for any (real) vector bundle, the transition functions can be required to be orthogonal matrices, i.e.

$$g_{\alpha\beta}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \to \mathcal{O}(k) \subset \mathrm{GL}(k; \mathbb{R})$$
.

(c) Show that any real vector bundle is isomorphic (abstractly) to its dual bundle.