DIFFERENTIAL GEOMETRY II: HOMEWORK 1

DUE MARCH 3

(1) Consider $\mathbb{C P}^{1}=\left\{\right.$ complex lines in $\left.\mathbb{C}^{2}\right\}$. It is the one-point compactification of \mathbb{C}, and is diffeomorphic to \mathbb{S}^{2}.
(a) Define analogously the tautological (complex) line bundle E over $\mathbb{C P}^{1}$.
(b) Recall that $\mathbb{C P}^{1}=\frac{\mathbb{C} \cup \mathbb{C}}{z \sim w=z^{-1}}$. In terms of this coordinate cover, work out the transition function of the tautological bundle.
(2) Consider the unit sphere in $\mathbb{R}^{n+1}, S^{n} \subset \mathbb{R}^{n+1}$. Show that $T S^{n} \oplus \mathbb{R}$ is isomorphic to \mathbb{R}^{n+1}.

The notation \oplus means the direct sum of vector bundles. Specifically, suppose that E has transition $g_{\mathcal{U}}$. Then, $E \oplus \mathbb{R}$ has transition

$$
\left[\begin{array}{cc}
g_{\mathcal{U V}} & 0 \\
0 & 1
\end{array}\right]
$$

(3) The Grassmannian $\operatorname{Gr}(k, n)$, the space of all k-planes in \mathbb{R}^{n}, is a smooth manifold of dimension $k(n-k)$.
(a) Define analogously the tautological vector bundle E over the $\operatorname{Grassmannian} \operatorname{Gr}(k, n)$.
(b) What is the dimension of E, as a smooth manifold? Give your reason.
(c) For $\operatorname{Gr}(2,4)$, work out its local trivializations over two coordinate charts, and find the transition functions $g_{\mathcal{U V}}$.
(4) Suppose that $E \xrightarrow{\pi} M$ is a real vector bundle of rank k. Let

$$
E \times_{M} E=\left\{\left(e_{1}, e_{2}\right) \in E \times E \mid \pi\left(e_{1}\right)=\pi\left(e_{2}\right)\right\} .
$$

Namely, it associates $E_{p} \times E_{p}$ for every $p \in M$. Locally, $\left.E\right|_{\mathcal{U}}=\mathcal{U} \times \mathbb{R}^{k},\left.E\right|_{\mathcal{U}} \times\left. E\right|_{\mathcal{U}}=$ $\left(\mathcal{U} \times \mathbb{R}^{k}\right) \times\left(\mathcal{U} \times \mathbb{R}^{k}\right)$, and $\left.(E \times E)\right|_{\mathcal{U}}=\mathcal{U} \times \mathbb{R}^{k} \times \mathbb{R}^{k}$.

A bundle metric is a smooth map $\mathfrak{g}: E \times_{M} E \rightarrow \mathbb{R}$ which defines a inner product on E_{p} for every p.
(a) Show that any (real) vector bundle always admits a bundle metric. (But it is never unique.)
(b) Prove that for any (real) vector bundle, the transition functions can be required to be orthogonal matrices, i.e.

$$
g_{\alpha \beta}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \rightarrow \mathrm{O}(k) \subset \mathrm{GL}(k ; \mathbb{R})
$$

(c) Show that any real vector bundle is isomorphic (abstractly) to its dual bundle.

