TOPICS IN DIFFERENTIAL GEOMETRY: HOMEWORK 11

DUE MAY 12

- (1) Let *E* be a vector bundle over *M*. Suppose that *E* carries a bundle metric (i.e. a fiberwise inner product), and a metric connection. Suppose that *M* carries a Riemannian metric. For a section ψ of *E*, the rough Laplacian is defined to be $\Box \psi = \sum_{i} (\nabla_{e_i} \nabla_{e_i} \nabla_{\nabla_{e_i} e_i}) \psi$, where $\{e_i\}$ is an orthonormal frame of *TM*, and the smaller ∇ is the Levi-Civita connection for *TM*.
 - (a) Check that $\Box \psi$ is independent of the choice of orthonormal frames.
 - (b) Verify that

$$\Delta |\psi|^2 = 2 \langle \Box \psi, \psi \rangle + 2 |\nabla \psi|^2 ,$$

where Δ is the Laplacian of (M, g) acting on scalar functions.

(c) Given any smooth section ψ , show that on the open set where $\psi \neq 0$,

$$|
abla\psi|\geq |
abla|\psi||$$
 .

Remark. Then the inequality is true globally in a suitable sense.

- (2) Suppose that M^n is an oriented, minimal hyperplane in \mathbb{R}^n . With a choice of unit normal, the second fundamental form is a section of $T^*M \otimes T^*M$. Denote the second fundamental form by $A = \sum_{1 \le i,j \le n} h_{ij} \omega^i \otimes \omega^j$, where $\{\omega^i\}$ is the orthonormal coframe.
 - (a) Since h_{ij} is symmetric, one may assume at any point p that $h_{ij} \stackrel{\text{at } p}{=} h_{ii}\delta_{ij}$. Prove that (at p)

$$|\nabla |A||^2 \le n \sum_{i \ne j} h_{jj;i}^2 \; .$$

(b) Prove that

$$|\nabla A|^2 \ge \left(1 + \frac{2}{n}\right) |\nabla |A||^2 \; .$$

In other words, part (c) of (1) can be improved under this setting.