TOPICS IN DIFFERENTIAL GEOMETRY: HOMEWORK 10

DUE MAY 5

- (1) Does there exists a map $f : (T^2, ds_{std}^2)$ to some (M, g) which satisfies the harmonic map equation and whose image is a curve? If so, give an example. If not, prove there is no such an example.
- (2) Examine the effect of the conformal change of the base metric for each terms in the Bochner formula of the energy density.

More precisely, let U be an open neighborhood of the origin of \mathbb{R}^2 , with the metric $\eta_{ab} dx^a \otimes dx^b$. For an harmonic map $f: (U, \eta) \to (M, g)$, its energy density obeys

$$\Delta_{\eta} e(f) = |\nabla^{\eta} \mathrm{d}f|^2 + 2K_{\eta} \cdot e(f) - 2K_M(\mathrm{d}f) \cdot (a(f))^2$$

What happens if one endow U with the metric $e^{2\rho}\eta$ for some $u \in C^{\infty}(U, \mathbb{R})$.

- (3) Consider S^2 with the standard round metric of Gaussian curvature 1. Provide a sequence of harmonic maps $f_k : S^2$ to some compact (M, g) such that
 - f_k is non-trivial;
 - $E(f_k) \leq E_0$ for some $E_0 > 0$;
 - f_k admits no C^0 -convergence subsequence;
 - f_k convergence on any compact subset of the complement of a point.

The limit, f_{∞} , shall be a harmonic map from \mathbb{R}^2 . What is f_{∞} in your example?