TOPICS IN DIFFERENTIAL GEOMETRY: HOMEWORK 09

DUE APRIL 28

- (1) Consider the $T^2 = S^1 \times S^1$ with the standard product metric.
 - (a) For \mathbb{R}^2 -valued function $\psi = (u, v)$, let $\mathcal{L}(u, v) = (\partial_x u \partial_y v, \partial_y u + \partial_x v)$. Explain that \mathcal{L} is a (first order) elliptic operator¹.
 - (b) Show by a direct computation that $||\psi||_{L^2_1} \leq ||\mathcal{L}(\psi)||_{L^2} + ||\psi||_{L^2}$.
- (2) Let (M^n, g) be a compact, oriented Riemannian manifold. Let $\alpha = \alpha_i dx^i$ be a 1-form on M.
 - (a) Suppose that α is harmonic. That is to say, $d\alpha = 0 = d^*\alpha$, where $d^*\alpha$ is the function given by $\operatorname{tr}(\nabla \alpha) = g^{ij}\alpha_{i;j}$. Note that $d\alpha = 0$ is equivalent to that $\alpha_{i;j} = \alpha_{j;i}$ for any i, j. Derive the Bochner formula for $\Delta |\alpha|^2$.
 - (b) Identify a curvature condition for M under which there is no non-trivial harmonic 1-forms.

Remark: As a consequence of Hodge theory, the first Betti number of M vanishes.

¹Find a definition by yourself