## TOPICS IN DIFFERENTIAL GEOMETRY: HOMEWORK 09

## DUE APRIL 28

(1) Consider the $T^{2}=S^{1} \times S^{1}$ with the standard product metric.
(a) For $\mathbb{R}^{2}$-valued function $\psi=(u, v)$, let $\mathcal{L}(u, v)=\left(\partial_{x} u-\partial_{y} v, \partial_{y} u+\partial_{x} v\right)$. Explain that $\mathcal{L}$ is a (first order) elliptic operator ${ }^{1}$.
(b) Show by a direct computation that $\|\psi\|_{L_{1}^{2}} \leq\|\mathcal{L}(\psi)\|_{L^{2}}+\|\psi\|_{L^{2}}$.
(2) Let $\left(M^{n}, g\right)$ be a compact, oriented Riemannian manifold. Let $\alpha=\alpha_{i} \mathrm{~d} x^{i}$ be a 1 -form on $M$.
(a) Suppose that $\alpha$ is harmonic. That is to say, $\mathrm{d} \alpha=0=\mathrm{d}^{*} \alpha$, where $\mathrm{d}^{*} \alpha$ is the function given by $\operatorname{tr}(\nabla \alpha)=g^{i j} \alpha_{i ; j}$. Note that $\mathrm{d} \alpha=0$ is equivalent to that $\alpha_{i ; j}=\alpha_{j ; i}$ for any $i, j$. Derive the Bochner formula for $\Delta|\alpha|^{2}$.
(b) Identify a curvature condition for $M$ under which there is no non-trivial harmonic 1-forms.
Remark: As a consequence of Hodge theory, the first Betti number of $M$ vanishes.

[^0]
[^0]:    ${ }^{1}$ Find a definition by yourself

