TOPICS IN DIFFERENTIAL GEOMETRY: HOMEWORK 04

DUE MARCH 17

We have shown that if M is *compact*, then $J_M(\gamma) = \frac{1}{2} \int_{S^1} |\gamma'(t)|^2 dt$ defined for $\gamma \in L^2_1(S^1, M)$ satisfies Condition C.

(1) If M is non-compact, show that J_M cannot satisfy Condition C.

Two continuous maps $\gamma_0, \gamma_1 : S^1 \to M$ are said to be (free¹) homotopic if there exists a continuous $H: S^1 \times [0,1] \to M$ such that $H(\cdot, 0) = \gamma_0(\cdot)$ and $H(\cdot, 1) = \gamma_1(\cdot)$.

For the cylinder $S^1 \times \mathbb{R}^1$, $S^1 \times \{t\}$ are homotopic for all t. These circles are called the latitude circles. Suppose that Σ is homeomorphic to the cylinder. Let

 $\mathcal{M}_L = \{ \gamma \in L^2_1(S^1, \Sigma) : \gamma \text{ is homotopic to the latitude} \}.$

In fact, \mathcal{M}_L is a connected component of $L^2_1(S^1, \Sigma)$. For the following surfaces in \mathbb{R}^3 , determine whether J_M on \mathcal{M}_L satisfies Condition C or not. Give your reason.

(2) Let $(u(t), v(t)) : (0, \infty) \to \mathbb{R}^2$ be a curve with the following properties.

- It always lies in the first quadrant, u(t) > 0 and v(t) > 0 for all t.
- When t < 1, u(t) = t and $v(t) = 1/t^2$.
- When t > 100, $u(t) = t \tanh(t)$ and $v(t) = \operatorname{sech}(t)$.

Let M be the surface of revolution about the u-axis: $(u(t), v(t) \cos \theta, v(t) \sin \theta)$.

(3) The catenoid: $(t, \cosh(t) \cos \theta, \cosh(t) \sin \theta)$ where $t \in \mathbb{R}$.

¹No base point condition is imposed.