TOPICS IN DIFFERENTIAL GEOMETRY: HOMEWORK 02

DUE MARCH 3

In this homework set, Σ is a compact, oriented surface with a volume form μ_{Σ} ; M is a complete, Riemannian manifold. Consider $\mathscr{M} = \operatorname{Map}(\Sigma, M)$ for some class of maps from Σ to M. Here, we will not bother with the class of maps, and only do formal calculation.

- (1) Let $f: M \to \mathbb{R}$ be a smooth function.
 - (a) Construct a function $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$. That is to say, any $\gamma \in \mathcal{M}$ means a map from Σ to M, and $\mathfrak{f}(\gamma)$ assigns a real number for γ .
 - (b) For any tangent vector $X \in T_{\gamma}\mathcal{M}$, compute $(d\mathfrak{f})|_{\gamma}(X)$. Note that for any $p \in \Sigma$, X(p) in a vector in $T_{\gamma(p)}M$.
- (2) Let α be a smooth 1-form on M.
 - (a) Construct a 1-form \mathcal{A} on \mathcal{M} . To be more precise, for any $\gamma \in \mathcal{M}$ and $X \in T_{\gamma}\mathcal{M}$, give the expression of $\mathcal{A}|_{\gamma}(X)$.
 - (b) Compute $d\mathcal{A}$: for any $\gamma \in \mathscr{M}$ and $X, Y \in T_{\gamma}\mathscr{M}$, work out $(d\mathcal{A})|_{\gamma}(X,Y)$.

A possible approach to (b). Choose a local coordinate $\{u^i\}_{i=1}^n$ for M^n . The 1-form α is locally $\alpha_i(u) du^i$.

Consider those maps whose image lies in a proper subset of this chart. In this case, those mappings can be regarded as a subset of $\mathscr{E} = \operatorname{Map}(\Sigma, \mathbb{R}^n)$. A tangent vector field on \mathscr{E} is a map from \mathscr{E} to \mathscr{E} . Originally, X and Y are vectors in \mathscr{E} ; extend them to maps, \mathscr{X} and \mathscr{Y} , from \mathscr{E} to \mathscr{E} such that $\mathscr{X}(\gamma) = X$ and $\mathscr{Y}(\gamma) = Y$. Note that $(D\mathscr{Y})(\mathscr{X})$ at γ can be computed as follows: Consider the curve $\gamma_s = \gamma + sX$ in \mathscr{E} . The derivative of its image under the map \mathscr{Y} at s = 0 is by definition $(D\mathscr{Y})(\mathscr{X})$ at γ . Namely,

$$(D\mathscr{Y})|_{\gamma}(X) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \mathscr{Y}(\gamma_s) \;.$$