DIFFERENTIAL GEOMETRY I: HOMEWORK 09

DUE NOVEMBER 25

(1) Suppose that $\gamma(t)$ is a geodesic, and let V(t) is a Jacobi field along $\gamma(t)$. Assume for simplicity that $V(0) \neq 0$. Prove the V(t) is indeed a variational field of a family of geodesics. (We have shown in class that the variational field of a family of geodesics must be a Jacobi field.)

Here is a possible construction. Let $\sigma(s) = \exp_{\gamma(0)}(sV(0))$ (The main property we need is that $\sigma(0) = \gamma(0)$ and $\sigma'(0) = V(0)$. Take a smooth vector field W(s)along $\sigma(s)$ with W(0) = V(0) and $(\nabla_{\sigma'(s)}W)|_{s=0} = (\nabla_{\gamma'(t)}V)|_{t=0}$. Consider $\gamma_s(t) =$ $\exp_{\sigma(s)}(tW(s)).$

(2) Due to Homework 7, we define ∇ on the cotangent bundle by using the Levi-Civita connection of (M, q). One can further extend ∇ to type (0, q)-tensors by requiring

$$\nabla_X(\eta_1\otimes\cdots\eta_q)=(\nabla_X\eta_1)\otimes\cdots\otimes\eta_q+\cdots+\eta_1\otimes\cdots\otimes(\nabla_X\eta_q)$$

for any 1-forms η_1, \ldots, η_q .

- (a) Remember that the Riemannian metric g itself is a (0, 2)-tensor. Show that $\nabla g = 0$. In fact, this is equivalent to that the Levi-Civita connection is a metric connection.
- (b) Let S be a (0, q)-tensor. For any vector fields X, V_1, \ldots, V_q , check that

$$X(S(V_1, ..., V_q)) = (\nabla_X S)(V_1, ..., V_q) + S(\nabla_X V_1, V_2, ..., V_q) + \dots + S(V_1, ..., V_{q-1}, \nabla_X V_q) .$$

(3) Derive the second variational formula for the energy function at a geodesic: Let

$$\gamma(t,s): [0,1] \times (-\varepsilon,\varepsilon) \to M$$

be a smooth map, and $\gamma(t,0)$ is a geodesic. Write $\gamma_s(t)$ of the s-fixed curve $\gamma(t,s)$. We have computed that for any $s \in (-\varepsilon, \varepsilon)$,

$$\frac{\mathrm{d}}{\mathrm{d}s}E[\gamma_s(t)] = -\int_0^1 \langle V, \nabla_T T \rangle \,\mathrm{d}t + \langle V, T \rangle \big|_{t=0}^1$$

where $T(t,s) = \frac{\partial}{\partial t} \gamma(t,s)$ and $V(t,s) = \frac{\partial}{\partial s} \gamma(t,s)$. Derive $\frac{\mathrm{d}^2}{\mathrm{d}s^2} \Big| = E[\gamma_s(t)]$.

$$\left. \frac{\mathrm{d}^2}{\mathrm{d}s^2} \right|_{s=0} E[\gamma_s(t)] \; .$$

Your answer shall involve $\langle R(T,V)V,T\rangle$ along $\gamma_0(t)$. Note that $\nabla_T T$ vanishes along $\gamma_0(t).$

- (4) Suppose that $\gamma(t)$ is a geodesic, and let $V \in \Gamma(TM)$ be a Killing field.
 - (a) Show that $V|_{\gamma(t)}$ is a Jacobi field, by a conceptual argument.
 - (b) Show that $V|_{\gamma(t)}$ is a Jacobi field, by checking the Jacobi equation directly.
 - (c) Suppose that (M, g) is connected and complete (in the sense of Hopf–Rinow). If at some $p \in M$, $V|_p = 0$ and $(\nabla_X V)|_p = 0$ for any $p \in T_p M$, prove that V vanishes identically.