DIFFERENTIAL GEOMETRY I: HOMEWORK 09

DUE NOVEMBER 25

(1) Suppose that $\gamma(t)$ is a geodesic, and let $V(t)$ is a Jacobi field along $\gamma(t)$. Assume for simplicity that $V(0) \neq 0$. Prove the $V(t)$ is indeed a variational field of a family of geodesics. (We have shown in class that the variational field of a family of geodesics must be a Jacobi field.)

Here is a possible construction. Let $\sigma(s)=\exp _{\gamma(0)}(s V(0))$ (The main property we need is that $\sigma(0)=\gamma(0)$ and $\left.\sigma^{\prime}(0)=V(0)\right)$. Take a smooth vector field $W(s)$ along $\sigma(s)$ with $W(0)=V(0)$ and $\left.\left(\nabla_{\sigma^{\prime}(s)} W\right)\right|_{s=0}=\left.\left(\nabla_{\gamma^{\prime}(t)} V\right)\right|_{t=0}$. Consider $\gamma_{s}(t)=$ $\exp _{\sigma(s)}(t W(s))$.
(2) Due to Homework 7, we define ∇ on the cotangent bundle by using the Levi-Civita connection of (M, g). One can further extend ∇ to type $(0, q)$-tensors by requiring

$$
\nabla_{X}\left(\eta_{1} \otimes \cdots \eta_{q}\right)=\left(\nabla_{X} \eta_{1}\right) \otimes \cdots \otimes \eta_{q}+\cdots+\eta_{1} \otimes \cdots \otimes\left(\nabla_{X} \eta_{q}\right)
$$

for any 1 -forms $\eta_{1}, \ldots, \eta_{q}$.
(a) Remember that the Riemannian metric g itself is a (0,2)-tensor. Show that $\nabla g=0$. In fact, this is equivalent to that the Levi-Civita connection is a metric connection.
(b) Let S be a $(0, q)$-tensor. For any vector fields X, V_{1}, \ldots, V_{q}, check that

$$
\begin{aligned}
X\left(S\left(V_{1}, \ldots, V_{q}\right)\right)= & \left(\nabla_{X} S\right)\left(V_{1}, \ldots, V_{q}\right) \\
& +S\left(\nabla_{X} V_{1}, V_{2}, \ldots, V_{q}\right)+\cdots+S\left(V_{1}, \ldots, V_{q-1}, \nabla_{X} V_{q}\right)
\end{aligned}
$$

(3) Derive the second variational formula for the energy function at a geodesic: Let

$$
\gamma(t, s):[0,1] \times(-\varepsilon, \varepsilon) \rightarrow M
$$

be a smooth map, and $\gamma(t, 0)$ is a geodesic. Write $\gamma_{s}(t)$ of the s-fixed curve $\gamma(t, s)$. We have computed that for any $s \in(-\varepsilon, \varepsilon)$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} E\left[\gamma_{s}(t)\right]=-\int_{0}^{1}\left\langle V, \nabla_{T} T\right\rangle \mathrm{d} t+\left.\langle V, T\rangle\right|_{t=0} ^{1}
$$

where $T(t, s)=\frac{\partial}{\partial t} \gamma(t, s)$ and $V(t, s)=\frac{\partial}{\partial s} \gamma(t, s)$. Derive

$$
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}\right|_{s=0} E\left[\gamma_{s}(t)\right]
$$

Your answer shall involve $\langle R(T, V) V, T\rangle$ along $\gamma_{0}(t)$. Note that $\nabla_{T} T$ vanishes along $\gamma_{0}(t)$.
(4) Suppose that $\gamma(t)$ is a geodesic, and let $V \in \Gamma(T M)$ be a Killing field.
(a) Show that $\left.V\right|_{\gamma(t)}$ is a Jacobi field, by a conceptual argument.
(b) Show that $\left.V\right|_{\gamma(t)}$ is a Jacobi field, by checking the Jacobi equation directly.
(c) Suppose that (M, g) is connected and complete (in the sense of Hopf-Rinow). If at some $p \in M,\left.V\right|_{p}=0$ and $\left.\left(\nabla_{X} V\right)\right|_{p}=0$ for any $p \in T_{p} M$, prove that V vanishes identically.

