DIFFERENTIAL GEOMETRY I: HOMEWORK 07 ## **DUE NOVEMBER 11** - (1) Let (M^n, g) be an oriented, Riemannian manifold. Show that the volume form is well-defined. - (2) On a Riemannian manifold (M, g), show that $$X(g(Y,Z)) + Y(g(Z,X)) - Z(g(X,Y))$$ + $g([X,Y],Z) + g([Z,X],Y) - g([Y,Z],X)$ is $C^{\infty}(M;\mathbb{R})$ -linear in X and Z. (3) On a Riemannian manifold (M,g), denote by ∇ its Levi-Civita connection. Show that $$\nabla_U \nabla_V W - \nabla_V \nabla_U W - \nabla_{[U,V]} W$$ is $C^{\infty}(M;\mathbb{R})$ -linear in U, V and W. (4) The cotangent bundle is the space $T^*M = \coprod_{p \in M} T_p^*M$. A map α from M to T^*M with $\alpha(p) \in T_p^*M$ for all $p \in M$ is a 1-form. Similarly, a connection on the cotangent bundle is a bilinear map $$\nabla: \Gamma(TM) \otimes \Omega^{1}(M) \to \Omega^{1}(M)$$ $$(X, \alpha) \mapsto \nabla_{X} \alpha$$ which satisfies - $\nabla_{f \cdot X} \alpha = f \cdot \nabla_X \alpha$, - $\nabla_X(f \cdot \alpha) = f \cdot \nabla_X \alpha + X(f) \cdot \alpha$ for any $f \in C^{\infty}(M; \mathbb{R})$. Roughly speaking, it is a directional derivative for 1-forms. (a) Suppose that there is a connection ∇ on the tangent bundle. Show that the condition $$d(\alpha(Y)) = (\nabla \alpha)(Y) + \alpha(\nabla Y)$$ uniquely defines a connection ∇ on the cotangent bundle. - (b) If $\nabla_{\partial_i}\partial_j = A_{ij}^k\partial_k$, work out $\nabla_{\partial_i}\mathrm{d} x^j$. - (5) Recall that an inner product, \langle , \rangle , on a vector space E induces an isomorphism by $$v \in E \mapsto \langle v, \cdot \rangle \in E^*$$. On a Riemannian manifold (M, g), this gives a map from TM to T^*M which sends T_pM isomorphically to T_p^*M for all $p \in M$. It is not hard to check the map is smooth. Thus, it induces a map from $\Gamma(TM)$ to $\Omega^1(M)$. The image of X under this map is usually denoted by X^{\flat} . By definition, $$X^{\flat}(Y) = g(X, Y) \ .$$ The map admits an inverse $\Omega^1(M) \to \Gamma(TM)$, and is usually denoted by α^{\sharp} . Namely, $$g(\alpha^{\sharp}, Y) = \alpha(Y)$$. Consider the Levi-Civita connection on TM, ∇ . Prove that $$(\nabla_X Y)^{\flat} = \nabla_X (Y^{\flat})$$ where the connection on the right hand side is defined by (4) with the Levi-Civita connection.