DIFFERENTIAL GEOMETRY I: HOMEWORK 07

DUE NOVEMBER 11

(1) Let $\left(M^{n}, g\right)$ be an oriented, Riemannian manifold. Show that the volume form is welldefined.
(2) On a Riemannian manifold (M, g), show that

$$
\begin{aligned}
& X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
& \quad+g([X, Y], Z)+g([Z, X], Y)-g([Y, Z], X)
\end{aligned}
$$

is $C^{\infty}(M ; \mathbb{R})$-linear in X and Z.
(3) On a Riemannian manifold (M, g), denote by ∇ its Levi-Civita connection. Show that

$$
\nabla_{U} \nabla_{V} W-\nabla_{V} \nabla_{U} W-\nabla_{[U, V]} W
$$

is $C^{\infty}(M ; \mathbb{R})$-linear in U, V and W.
(4) The cotangent bundle is the space $T^{*} M=\amalg_{p \in M} T_{p}^{*} M$. A map α from M to $T^{*} M$ with $\alpha(p) \in T_{p}^{*} M$ for all $p \in M$ is a 1 -form.

Similarly, a connection on the cotangent bundle is a bilinear map

$$
\begin{array}{ccc}
\nabla: \Gamma(T M) \otimes \Omega^{1}(M) & \rightarrow \Omega^{1}(M) \\
(X, \alpha) & \mapsto \nabla_{X} \alpha
\end{array}
$$

which satisfies

- $\nabla_{f \cdot X} \alpha=f \cdot \nabla_{X} \alpha$,
- $\nabla_{X}(f \cdot \alpha)=f \cdot \nabla_{X} \alpha+X(f) \cdot \alpha$
for any $f \in C^{\infty}(M ; \mathbb{R})$. Roughly speaking, it is a directional derivative for 1-forms.
(a) Suppose that there is a connection ∇ on the tangent bundle. Show that the condition

$$
\mathrm{d}(\alpha(Y))=(\nabla \alpha)(Y)+\alpha(\nabla Y)
$$

uniquely defines a connection ∇ on the cotangent bundle.
(b) If $\nabla_{\partial_{i}} \partial_{j}=A_{i j}^{k} \partial_{k}$, work out $\nabla_{\partial_{i}} \mathrm{~d} x^{j}$.
(5) Recall that an inner product, \langle,$\rangle , on a vector space E$ induces an isomorphism by

$$
v \in E \mapsto\langle v, \cdot\rangle \in E^{*}
$$

On a Riemannian manifold (M, g), this gives a map from $T M$ to $T^{*} M$ which sends $T_{p} M$ isomorphically to $T_{p}^{*} M$ for all $p \in M$. It is not hard to check the map is smooth.

Thus, it induces a map from $\Gamma(T M)$ to $\Omega^{1}(M)$. The image of X under this map is usually denoted by X^{b}. By definition,

$$
X^{b}(Y)=g(X, Y) .
$$

The map admits an inverse $\Omega^{1}(M) \rightarrow \Gamma(T M)$, and is usually denoted by α^{\sharp}. Namely,

$$
g\left(\alpha^{\sharp}, Y\right)=\alpha(Y) .
$$

Consider the Levi-Civita connection on $T M, \nabla$. Prove that

$$
\left(\nabla_{X} Y\right)^{b}=\nabla_{X}\left(Y^{b}\right)
$$

where the connection on the right hand side is defined by (4) with the Levi-Civita connection.

