DIFFERENTIAL GEOMETRY I: HOMEWORK 06

DUE OCTOBER 21

- (1) Show that S^n is orientable. You may try to use (2.a) of Homework 5.
- (2) Let M^n be a smooth manifold, and Σ^k be a submanifold of M, which is compact, oriented and boundaryless¹.
 - (a) Show that the integration over Σ defines a homomorphism from $\mathrm{H}^{k}_{\mathrm{dR}}(M)$ to \mathbb{R} .
 - (b) Show that $\mathrm{H}^{n-1}_{\mathrm{dR}}(\mathbb{R}^n \setminus \{0\})$ is non-trivial. You may try to use (1.c) of Homework 5.
- (3) Recall that \mathbb{RP}^n is the space of lines in \mathbb{R}^{n+1} , and can also be described as $S^n/\{\pm 1\}$.
 - (a) Explain that \mathbb{RP}^2 is not orientable.
 - (b) Show that \mathbb{RP}^3 is orientable.
- (4) The main purpose of this exercise is to show that $H^1_{dB}(S^2)$ is trivial.
 - (a) Suppose that α is a closed 1-form on \mathbb{R}^2 . Construct a function on \mathbb{R}^2 so that its exterior derivative is α .

Note that one may connect any (x, y) to the origin by $(0, 0) \rightarrow (x, 0) \rightarrow (x, y)$ or $(0, 0) \rightarrow (0, y) \rightarrow (x, y)$ (or other paths). Does the integration along these paths gives the same value?

- (b) Use the strategy of (a) to show that $H^1_{dR}(S^2)$ is trivial.
- (5) [W, exercise 13 in ch.2] See another file.

 $^{1}\partial \S = \varnothing.$