DIFFERENTIAL GEOMETRY I: HOMEWORK 05

DUE OCTOBER 14

(1) Calculate the exterior derivative of the following differential forms.
(a) $\mathrm{d} z+x \mathrm{~d} y-y \mathrm{~d} z$ on \mathbb{R}^{3}.
(b) $\frac{x \mathrm{~d} y-y \mathrm{~d} x}{1+x^{2}+y^{2}}$ on \mathbb{R}^{2}.
(c) $\frac{1}{|\mathbf{x}|^{n}} \sum_{j=1}^{n}(-1)^{j-1} x^{j} \mathrm{~d} x^{1} \wedge \cdots \wedge \widehat{\mathrm{~d} x^{j}} \wedge \cdots \wedge \mathrm{~d} x^{n}$ on $\mathbb{R}^{n} \backslash\{0\}$, where $\cdot \hat{c}$ means that the term is not there.
(2) Consider S^{2} with the \mathbf{u} and \mathbf{v} coordinates described by (4) of Homework 2. For
(a) $\frac{4}{\left(1+\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}\right)^{2}} \mathrm{~d} u^{1} \wedge \mathrm{~d} u^{2}$ and
(b) $\frac{u^{1} \mathrm{~d} u^{2}-u^{2} \mathrm{~d} u^{1}}{\left(1+\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}\right)^{2}}$,
work out its expression in \mathbf{v} coordinate.
(3) Consider the 2-form on $\mathbb{R}^{2 n}$ defined by

$$
\omega=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}+\mathrm{d} x^{3} \wedge \mathrm{~d} x^{4}+\cdots+\mathrm{d} x^{2 n-1} \wedge \mathrm{~d} x^{2 n}
$$

Compute $\omega^{n}=\omega \wedge \omega \wedge \cdots \wedge \omega$.
(4) For any $\xi \in \Omega^{k}(M)$ and $\eta \in \Omega^{\ell}(M)$, show that

$$
\mathrm{d}(\xi \wedge \eta)=(\mathrm{d} \xi) \wedge \eta+(-1)^{k} \xi \wedge(\mathrm{~d} \eta)
$$

(5) Verify Cartan's magic formula:

$$
L_{V} \alpha=\left(\mathrm{d} \circ \iota_{V}+\iota_{V} \circ \mathrm{~d}\right) \alpha
$$

for $\alpha=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{k}$.
(6) For a 1-form α and two vector fields U and V, show that

$$
(\mathrm{d} \alpha)(U, V)=U(\alpha(V))-V(\alpha(U))-\alpha([U, V]) .
$$

Cartan's magic formula may help here.

