DIFFERENTIAL GEOMETRY I: HOMEWORK 04

DUE OCTOBER 7

(1) On \mathbb{R}^{3}, consider the vector fields

$$
U=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z} \quad \text { and } \quad V=\frac{\partial}{\partial y}
$$

It is easy to see that the flow generated by V is $\psi_{s}\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, y_{0}+s, z_{0}\right)$.
(a) Solve the flow φ_{t} generated by U.
(b) Compute $\mathrm{d} \varphi_{-t}\left(V\left(\varphi_{t}\left(x_{0}, y_{0}, z_{0}\right)\right)\right)$, and $\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \mathrm{~d} \varphi_{-t}\left(V\left(\varphi_{t}\left(x_{0}, y_{0}, z_{0}\right)\right)\right)$. Verify that the result coincides with $[U, V]$.
(c) For non-zero t and s, will $\left(\varphi_{t} \circ \psi_{s}\right)\left(x_{0}, y_{0}, z_{0}\right)=\left(\psi_{s} \circ \varphi_{t}\right)\left(x_{0}, y_{0}, z_{0}\right)$ for some $\left(x_{0}, y_{0}, z_{0}\right)$? Give your reason.
(2) Determine whether the following distribution is involutive. If it is, describe its integral surface.
(a) $\operatorname{span}\left\{\frac{\partial}{\partial x}, \cos x \frac{\partial}{\partial y}+\sin x \frac{\partial}{\partial z}\right\}$ in \mathbb{R}^{3}
(b) $\operatorname{span}\left\{\frac{\partial}{\partial x}-\frac{y}{x^{2}+y^{2}} \frac{\partial}{\partial z}, \frac{\partial}{\partial y}+\frac{x}{x^{2}+y^{2}} \frac{\partial}{\partial z}\right\}$ in $\mathbb{R}^{3} \backslash\{z$-axis $\}$.
(3) (a) Consider the open unit ball, $B_{1}(0)$, in \mathbb{R}^{n}. For any two distinct points $p, q \in B_{1}(0)$, show that there is a diffeomorphism $\psi: B_{1}(0) \rightarrow B_{1}(0)$ which sends p to q.
Hint: Let σ be the line segment connecting p, q. Try to construct a vector field U which is equal to $q-p$ on a neighborhood of σ, and $\operatorname{supp} U \subset B_{1}(0)$.
(b) Let M be a compact, connected manifold. Let $\operatorname{Aut}(M)$ be the group ${ }^{11}$ of selfdiffeomorphisms of M. Prove that $\operatorname{Aut}(M)$ acts transitively on M. Namely, for any $p, q \in M$, there exists some $\varphi \in \operatorname{Aut}(M)$ such that $\varphi(p)=q$.
(4) Let φ_{t} be the one-parameter family of diffeomorphism generated by U. We have shown in class that

$$
\left(\varphi_{-t}\right)_{*}([V, W])=\left[\left(\varphi_{-t}\right)_{*}(V),\left(\varphi_{-t}\right)_{*}(W)\right]
$$

for any $t \in \mathbb{R}$. Use it to give another proof of the Jacobi identity.

[^0]
[^0]: ${ }^{1}$ The binary operation is the composition.

