DIFFERENTIAL GEOMETRY I: HOMEWORK 04

DUE OCTOBER 7

(1) On \mathbb{R}^3 , consider the vector fields

$$U = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}$$
 and $V = \frac{\partial}{\partial y}$

It is easy to see that the flow generated by V is $\psi_s(x_0, y_0, z_0) = (x_0, y_0 + s, z_0)$.

- (a) Solve the flow φ_t generated by U.
- (b) Compute $d\varphi_{-t}(V(\varphi_t(x_0, y_0, z_0)))$, and $\frac{d}{dt}\Big|_{t=0} d\varphi_{-t}(V(\varphi_t(x_0, y_0, z_0))))$. Verify that the result coincides with [U, V].
- (c) For non-zero t and s, will $(\varphi_t \circ \psi_s)(x_0, y_0, z_0) = (\psi_s \circ \varphi_t)(x_0, y_0, z_0)$ for some (x_0, y_0, z_0) ? Give your reason.
- (2) Determine whether the following distribution is involutive. If it is, describe its integral surface.
 - (a) $\operatorname{span}\left\{\frac{\partial}{\partial x}, \cos x \frac{\partial}{\partial y} + \sin x \frac{\partial}{\partial z}\right\}$ in \mathbb{R}^3
 - (b) $\operatorname{span}\left\{\frac{\partial}{\partial x} \frac{y}{x^2 + y^2}\frac{\partial}{\partial z}, \frac{\partial}{\partial y} + \frac{x}{x^2 + y^2}\frac{\partial}{\partial z}\right\}$ in $\mathbb{R}^3 \setminus \{z \text{-axis}\}.$
- (3) (a) Consider the open unit ball, $B_1(0)$, in \mathbb{R}^n . For any two distinct points $p, q \in B_1(0)$, show that there is a diffeomorphism $\psi : B_1(0) \to B_1(0)$ which sends p to q. Hint: Let σ be the line segment connecting p, q. Try to construct a vector field Uwhich is equal to q - p on a neighborhood of σ , and $\operatorname{supp} U \subset B_1(0)$.
 - (b) Let M be a compact, connected manifold. Let $\operatorname{Aut}(M)$ be the group¹ of selfdiffeomorphisms of M. Prove that $\operatorname{Aut}(M)$ acts *transitively* on M. Namely, for any $p, q \in M$, there exists some $\varphi \in \operatorname{Aut}(M)$ such that $\varphi(p) = q$.
- (4) Let φ_t be the one-parameter family of diffeomorphism generated by U. We have shown in class that

$$(\varphi_{-t})_*([V,W]) = [(\varphi_{-t})_*(V), (\varphi_{-t})_*(W)]$$

for any $t \in \mathbb{R}$. Use it to give another proof of the Jacobi identity.

¹The binary operation is the composition.