DIFFERENTIAL GEOMETRY I: HOMEWORK 03

DUE SEPTEMBER 30

(1) [W, exercise 14 in ch.1] Is every vector field on the real line, \mathbb{R}^{1}, complete?
(2) For any $n \in \mathbb{N}$, show that \mathbb{R}^{n} is diffeomorphic to $B_{1}(0)=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$.
(3) Note that for a smooth manifold $M, \Delta M=\{(p, p) \in M \times M: p \in M\}$ is a closed subset in $M \times M$. (In fact, the diagonal map embeds M into $M \times M$.)

For the map S in the proof of reducing dimension of an injective immersion into the Euclidean space, modify it by constructing a map to S^{N-1}, instead of \mathbb{R}^{N}.
(4) Prove that any n-dimensional manifold can be immersed into $\mathbb{R}^{2 n}$. You may use the facts we have proved in class.
(5) Compute the flow of each of the following vector fields on \mathbb{R}^{2}.
(a) $V=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$.
(b) $V=\frac{\partial}{\partial x}+(x+2) y \frac{\partial}{\partial y}$
(6) Prove the Jacobi identity: for any three smooth vector fields U, V, W,

$$
[U,[V, W]]+[W,[U, V]]+[V,[W, U]]=0
$$

