DIFFERENTIAL GEOMETRY I: HOMEWORK 03

DUE SEPTEMBER 30

- (1) [W, exercise 14 in ch.1] Is every vector field on the real line, \mathbb{R}^1 , complete?
- (2) For any $n \in \mathbb{N}$, show that \mathbb{R}^n is diffeomorphic to $B_1(0) = \{x \in \mathbb{R}^n : |x| < 1\}$.
- (3) Note that for a smooth manifold M, ΔM = {(p, p) ∈ M × M : p ∈ M} is a closed subset in M × M. (In fact, the diagonal map embeds M into M × M.) For the map S in the proof of reducing dimension of an injective immersion into the Euclidean space, modify it by constructing a map to S^{N-1}, instead of ℝ^N.
- (4) Prove that any *n*-dimensional manifold can be immersed into \mathbb{R}^{2n} . You may use the facts we have proved in class.
- (5) Compute the flow of each of the following vector fields on \mathbb{R}^2 .

(a)
$$V = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$$
.
(b) $V = \frac{\partial}{\partial x} + (x+2)y \frac{\partial}{\partial y}$

(6) Prove the Jacobi identity: for any three smooth vector fields U, V, W,

[U, [V, W]] + [W, [U, V]] + [V, [W, U]] = 0 .