DIFFERENTIAL GEOMETRY I: HOMEWORK 02

DUE SEPTEMBER 23

(1) Consider the 2-torus $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$ where $(k, \ell) \in \mathbb{Z}^2$ acts on \mathbb{R}^2 by

$$(k,\ell)\cdot(x,y) = (x+k,y+\ell) .$$

Let $F : \mathbb{R} \to T^2$ be given by $f(t) = [(t, \sqrt{2}t)].$

- (a) Show that F is injective.
- (b) Prove that F is not an embedding.
- (2) [W, exercise 9 in ch.1] Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = x^3 + xy + y^3 + 1$$

For which points, p = (0,0), $p = (\frac{1}{3}, \frac{1}{3})$, $p = (\frac{-1}{3}, \frac{-1}{3})$, is $f^{-1}(f(p))$ an (embedded) submanifold in \mathbb{R}^2 ?

(3) Let $F: \mathbb{R}^3 \to \mathbb{R}^4$ be given by

$$F(x, y, z) = (x^2 - y^2, xy, yz, zx)$$
.

Let S^2 be the unit 2-sphere in \mathbb{R}^3 . Observe that $f = F|_{S^2}$ satisfies f(x, y, z) = f(-x, -y, -z), so that it descends to a map

$$\tilde{f}: \mathbb{RP}^2 = S^2/\{\pm 1\} \to \mathbb{R}^4$$
.

Prove that \tilde{f} is an embedding. [Hint: A bijective continuous map from a compact topological space to a Hausdorff topological space is a homeomorphism.]

(4) Consider the unit sphere S^2 in \mathbb{R}^3 with the stereographic projection:

Write down the following two vector fields in terms of (V, φ_V) :

(a)
$$u^1 \frac{\partial}{\partial u^1} + u^2 \frac{\partial}{\partial u^2};$$

(b) $-u^2 \frac{\partial}{\partial u^1} + u^1 \frac{\partial}{\partial u^2}.$

- (5) Let M^m , N^n be smooth manifolds, and $F: M \to N$ be a smooth map. Suppose that there is a submanifold : L^{ℓ} in N^n .
 - (a) Prove that for any $q \in L$, one can find a coordinate chart of N at q, (V, φ) so that $\varphi(L \cap V) = (\mathbb{R}^{\ell} \times \{0\}) \cap \varphi(V).$

(b) [Bonus] Suppose that for any $q \in L$ and $p \in M$ with f(p) = q,

$$T_q L + \mathrm{d}F|_p(T_p M) = T_q N \; .$$

Prove that $F^{-1}(Z)$ is a submanifold in M, and determine its dimension.