DIFFERENTIAL GEOMETRY I: HOMEWORK 02

DUE SEPTEMBER 23

(1) Consider the 2-torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ where $(k, \ell) \in \mathbb{Z}^{2}$ acts on \mathbb{R}^{2} by

$$
(k, \ell) \cdot(x, y)=(x+k, y+\ell)
$$

Let $F: \mathbb{R} \rightarrow T^{2}$ be given by $f(t)=[(t, \sqrt{2} t)]$.
(a) Show that F is injective.
(b) Prove that F is not an embedding.
(2) [W, exercise 9 in ch.1] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=x^{3}+x y+y^{3}+1
$$

For which points, $p=(0,0), p=\left(\frac{1}{3}, \frac{1}{3}\right), p=\left(\frac{-1}{3}, \frac{-1}{3}\right)$, is $f^{-1}(f(p))$ an (embedded) submanifold in \mathbb{R}^{2} ?
(3) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by

$$
F(x, y, z)=\left(x^{2}-y^{2}, x y, y z, z x\right) .
$$

Let S^{2} be the unit 2 -sphere in \mathbb{R}^{3}. Observe that $f=\left.F\right|_{S^{2}}$ satisfies $f(x, y, z)=$ $f(-x,-y,-z)$, so that it descends to a map

$$
\tilde{f}: \mathbb{R P}^{2}=S^{2} /\{ \pm 1\} \rightarrow \mathbb{R}^{4}
$$

Prove that \tilde{f} is an embedding. [Hint: A bijective continuous map from a compact topological space to a Hausdorff topological space is a homeomorphism.]
(4) Consider the unit sphere S^{2} in \mathbb{R}^{3} with the stereographic projection:

$$
\begin{array}{rlrl}
\varphi_{U}^{-1}: \mathbb{R}^{2} & \rightarrow U=S^{2} \backslash\{(0,0,1)\} & \varphi_{V}^{-1}: \mathbb{R}^{2} & \rightarrow V=S^{2} \backslash\{(0,0,-1)\} \\
\mathbf{u} & \mapsto\left(\frac{2 \mathbf{u}}{1+|\mathbf{u}|^{2}}, \frac{-1+|\mathbf{u}|^{2}}{1+|\mathbf{u}|^{2}}\right) & \mathbf{v} \mapsto\left(\frac{2 \mathbf{v}}{1+|\mathbf{v}|^{2}}, \frac{1-|\mathbf{v}|^{2}}{1+|\mathbf{v}|^{2}}\right)
\end{array}
$$

Write down the following two vector fields in terms of $\left(V, \varphi_{V}\right)$:
(a) $u^{1} \frac{\partial}{\partial u^{1}}+u^{2} \frac{\partial}{\partial u^{2}}$;
(b) $-u^{2} \frac{\partial}{\partial u^{1}}+u^{1} \frac{\partial}{\partial u^{2}}$.
(5) Let M^{m}, N^{n} be smooth manifolds, and $F: M \rightarrow N$ be a smooth map. Suppose that there is a submanifold : L^{ℓ} in N^{n}.
(a) Prove that for any $q \in L$, one can find a coordinate chart of N at $q,(V, \varphi)$ so that $\varphi(L \cap V)=\left(\mathbb{R}^{\ell} \times\{0\}\right) \cap \varphi(V)$.
(b) [Bonus] Suppose that for any $q \in L$ and $p \in M$ with $f(p)=q$,

$$
T_{q} L+\left.\mathrm{d} F\right|_{p}\left(T_{p} M\right)=T_{q} N .
$$

Prove that $F^{-1}(Z)$ is a submanifold in M, and determine its dimension.

