DIFFERENTIAL GEOMETRY I: HOMEWORK 11

DUE DECEMBER 16

(1) On \mathbb{R}^{n} with the standard flat metric, show that if

$$
\alpha=\sum_{i_{1}<\cdots<i_{k}} \alpha_{I} \mathrm{~d} x^{i_{1}} \wedge \cdots \wedge \mathrm{~d} x^{i_{k}},
$$

then

$$
\Delta \alpha=-\sum_{i_{1}<\cdots<i_{k}}\left(\sum_{j} \frac{\partial^{2} \alpha_{I}}{\partial x^{j} \partial x^{j}}\right) \mathrm{d} x^{i_{1}} \wedge \cdots \wedge \mathrm{~d} x^{i_{k}}
$$

Suppose that (M, g) is compact, oriented, and boundaryless; denote by $\mathrm{d} \mu_{g}$ the volume form.
(2) On a Riemannian manifold, the divergence of a vector field is the function

$$
\operatorname{div}(V)=\sum_{i}\left\langle\nabla_{e_{i}} V, e_{i}\right\rangle,
$$

where $\left\{e_{i}\right\}$ is a (local) orthonormal frame. Show that $\int_{M} \operatorname{div}(V) \mathrm{d} \mu_{g}=0$ for any vector field V.
(3) It is not hard to verify that for functions $C^{\infty}(M ; \mathbb{R}) \ni f$,

$$
\Delta f=-\operatorname{tr}\left(\nabla^{2} f\right)=-\sum_{i}\left(\nabla_{e_{i}} \nabla_{e_{i}} f-\nabla_{\nabla_{e_{i}} e_{i}} f\right) .
$$

Show that for any $\beta \in \Omega^{k}(M)$ and $f \in \mathcal{C}^{\infty}(M ; \mathbb{R})$,

$$
-\operatorname{tr}\left(\nabla^{2}(f \cdot \beta)\right)=-f \cdot \operatorname{tr}\left(\nabla^{2} \beta\right)-2 \nabla_{\nabla f} \beta+(\Delta f) \cdot \beta
$$

(4) The Green operator $G: \Omega^{k}(M) \rightarrow\left(\mathcal{H}^{k}\right)^{\perp}$ is defined by setting $G(\alpha)$ to be the unique solution of $\Delta \omega=\alpha-\pi_{\mathcal{H}}(\alpha)$ in $\left(\mathcal{H}^{k}\right)^{\perp}$, Prove that G takes bounded sequences into sequences with Cauchy subsequences.
(5) Consider Δ acting on $\Omega^{k}(M)$ for some fixed k. A real number λ is said to be an eigenvalue of Δ if there exists a non-trivial k-form α such that $\Delta \alpha=\lambda \alpha$, and α is called an eigenform, The eigenforms corresponding to a fixed λ constitute a subspace $E_{\lambda}^{k}(M)$ of $\Omega^{k}(M)$, which is called the eigenspace of the eigenvalue λ.
(a) Prove that the eigenvalues are non-negative.
(b) Prove that the eigenspaces must be finite dimensional.
(c) Prove that the eigenvalues have no accumulation point.
(d) Prove that eigenforms corresponding to distinct eigenvalues are L^{2}-orthogonal.

For the existence and further properties, see [Warner, ex. 16 in ch. 6].

