DIFFERENTIAL GEOMETRY I: HOMEWORK 10

DUE DECEMBER 9

(1) On a Riemannian manifold (M, g), let $\left\{e_{i}\right\}$ be a local, orthonormal frame for $T M$. Denote bt θ_{i}^{j} the coefficient 1-forms for the Levi-Civita connection:

$$
\nabla e_{i}=\theta_{i}^{j} \otimes e_{j}
$$

Show that

$$
\left\langle R(U, V) e_{i}, e_{j}\right\rangle=\left(\mathrm{d} \theta_{i}^{j}+\theta_{k}^{j} \wedge \theta_{i}^{k}\right)(U, V)
$$

(2) Consider the Poincaré disk model of the hyperbolic geometry:

$$
g=\frac{4}{\left(1-\sum_{j=1}^{n}\left(x^{j}\right)^{2}\right)^{2}} \sum_{j=1}^{n} \mathrm{~d} x^{j} \otimes \mathrm{~d} x^{j}
$$

on $D=\left\{\left(x^{1}, \cdots, x^{n}\right) \in \mathbb{R}^{n} \mid \sum_{j=1}^{n}\left(x^{j}\right)^{2}<1\right\}$.
(a) Calculate its Levi-Civita connection.
(b) Describe its Riemann curvature tensor.
(3) Consider the metric

$$
g=A(r)^{2} \mathrm{~d} r \otimes \mathrm{~d} r+r^{2} \mathrm{~d} \phi \otimes \mathrm{~d} \phi+r^{2} \sin ^{2} \phi \mathrm{~d} \theta \otimes \mathrm{~d} \theta
$$

on $M=I \times \mathbf{S}^{2}$. Here, r is the coordinate on the interval I, and (ϕ, θ) is the spherical coordinate on \mathbf{S}^{2}.
(a) Calculate its Levi-Civita connection.
(b) Describe its Riemann curvature tensor.
(4) On $S^{3} \subset \mathbb{R}^{4}$, consider the following 1-forms

$$
\begin{array}{r}
\sigma^{1}=-x^{2} \mathrm{~d} x^{1}+x^{1} \mathrm{~d} x^{2}-x^{4} \mathrm{~d} x^{3}+x^{3} \mathrm{~d} x^{4} \\
\sigma^{2}=-x^{3} \mathrm{~d} x^{1}+x^{4} \mathrm{~d} x^{2}+x^{1} \mathrm{~d} x^{3}-x^{2} \mathrm{~d} x^{4} \\
\sigma^{3}=-x^{4} \mathrm{~d} x^{1}-x^{3} \mathrm{~d} x^{2}+x^{2} \mathrm{~d} x^{3}+x^{1} \mathrm{~d} x^{2}
\end{array}
$$

By using $\sum_{j=1}^{4}\left(x^{j}\right)^{2}=1$, one can show that $\underline{g}=\sum_{k=1}^{3} \sigma^{k} \otimes \sigma^{k}$ is the standard round metric of radius 1 on S^{3}. The important relation you will need is

$$
\mathrm{d} \sigma^{i}=2 \sigma^{j} \wedge \sigma^{k} \quad \text { for }(i, j, k) \text { being cylic permutation of }(1,2,3) .
$$

On $\{s>1\} \times \mathbb{S}^{3}$, consider the following metric:

$$
g=\frac{1}{4} \frac{s+1}{s-1} \mathrm{~d} s \otimes \mathrm{~d} s+4 \frac{s-1}{s+1} \sigma^{3} \otimes \sigma^{3}+\left(s^{2}-1\right)\left(\sigma^{1} \otimes \sigma^{1}+\sigma^{2} \otimes \sigma^{2}\right) .
$$

Show that the Ricci curvature of this metric vanishes identically.
Hint: You may do formal calculation first. Say, $\omega^{0}=f(s) \mathrm{d} s, \omega^{1}=a(s) \sigma^{1}, \omega^{2}=b(s) \sigma^{2}$ and $\omega^{3}=c(s) \sigma^{3}$ form an orthonormal trivializing sections for the contagent bundle. Then, $\mathrm{d} \omega^{0}=0$, and

$$
\begin{aligned}
\mathrm{d} \omega^{1} & =-\omega_{0}^{1} \wedge \omega^{0}-\omega_{2}^{1} \wedge \omega^{2}-\omega_{3}^{1} \wedge \omega^{3} \\
& =a^{\prime} \mathrm{d} s \wedge \sigma^{1}+2 a \sigma^{2} \wedge \sigma^{3} \\
& =\frac{a^{\prime}}{f a} \omega^{0} \wedge \omega^{1}+\frac{2 a}{b c} \omega^{2} \wedge \omega^{3} .
\end{aligned}
$$

(5) Prove that in three dimensions, the whole Riemann curvature tensor is determined by the Ricci curvature tensor.

Hint: Do this at every point p. We may assume $g_{i j}(p)=\delta_{i j}$. Denote by $R_{j k j \ell}$ the components of the Riemann curvature tensor (at p):

$$
R_{j k j \ell}=\left\langle R\left(\partial_{j}, \partial_{\ell}\right) \partial_{k}, \partial_{j}\right\rangle
$$

The Ricci curvature (at p) is

$$
\operatorname{Ric}_{k \ell}=\sum_{j} R_{j k j \ell}
$$

for $k, \ell \in\{1,2,3\}$. Since the Ricci curvature is symmetric in k, ℓ, there are six components. You are asked to show Ric ${ }_{k \ell}$ completely determines $R_{i j k \ell}$. Remember that the Riemann curvature tensor has some symmetries.

Remark: (4) shows that this cannot be true when dim > 3: its Ricci curvature vanishes, but the Riemann curvature tensor has non-trivial components.

