DIFFERENTIAL GEOMETRY I: HOMEWORK 01

DUE SEPTEMBER 16

(1) [W, exercise 18 in ch.1] Prove that a C^{∞} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ cannot be injective.
(2) [W, exercise 1 in ch.1] The d-sphere is the set

$$
S^{d}=\left\{\left(a_{1}, \ldots, a_{d+1}\right) \in \mathbb{R}^{d+1}: \sum_{j=1}^{d+1} a_{j}^{2}=1\right\}
$$

Let $\mathbf{N}=(0, \ldots, 0,1)$ and $\mathbf{S}=(0, \ldots, 0,-1)$. Construct a coordinate cover of S^{d} by using the stereographic projections $S^{d} \backslash\{\mathbf{N}\} \rightarrow \mathbb{R}^{d}$ and $S^{d} \backslash\{\mathbf{S}\} \rightarrow \mathbb{R}^{d}$, and explain that it gives S^{d} a structure of smooth manifold. To be more precise, work out the coordinate transition function to show that it is a diffeomorphism.
(3) (a) Demonstrate that the unit tangent bundle of S^{2},

$$
S^{1}\left(T S^{2}\right)=\left\{(p, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3}: p \in S^{2}, v \in T_{p} S^{2} \text { with }|v|=1\right\}
$$

is a smooth manifold by constructing a coordinate cover for it, and work out its coordinate transition.
(b) Identify (set-theoretically) $S^{1}\left(T S^{2}\right)$ with a matrix group.
(4) Let $\operatorname{Gr}(2,4)$ be the space of 2 -dimensional vector subspaces in \mathbb{R}^{4}. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{4}$ be the standard basis of \mathbb{R}^{4}.
(a) Let $U_{12} \subset \mathbf{G r}(2,4)$ be the 2-planes whose orthogonal projection onto the span $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a linear isomorphism, i.e.

$$
U_{12}=\left\{P \in \mathbf{G r}(2,4): \pi_{12}: P \rightarrow \operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} \text { is an isomorphism }\right\}
$$

Construct $\psi_{12}=\left(\varphi_{12}\right)^{-1}: \mathbb{R}^{4} \rightarrow U_{12}$ in a similar manner as that for the projective spaces.
(b) Similarly, construct U_{34} and $\psi_{34}=\left(\varphi_{34}\right)^{-1}$. Work out

$$
\varphi_{34} \circ \psi_{12}: \varphi_{12}\left(U_{12} \cap U_{34}\right) \rightarrow \varphi_{34}\left(U_{12} \cap U_{34}\right)
$$

(c) Similarly, construct U_{13} and $\psi_{13}=\left(\varphi_{13}\right)^{-1}$. Work out

$$
\varphi_{13} \circ \psi_{12}: \varphi_{12}\left(U_{12} \cap U_{13}\right) \rightarrow \varphi_{13}\left(U_{12} \cap U_{13}\right)
$$

