GEOMETRY II: HOMEWORK 12

DUE JUNE 12

(1) Consider \mathbb{CP}^n with the Fubini–Study metric. The group

$$U(n+1) = \{A \in GL(n+1; \mathbb{C}) : A^* = A^{-1}\}\$$

has a standard action on \mathbb{C}^{n+1} .

- (a) Show that the action induces an action on \mathbb{CP}^n .
- (b) Show that U(n+1) acts on \mathbb{CP}^n
 - (i) transitively;
 - (ii) holomorphically;
 - (iii) isometrically.
- (c) Describe the (Riemannian) sectional curvature of the Fubini–Study metric. (The Fubini–Study metric is unique up to scaling. Fix a factor for your convenience.)
- (2) For a finite dimensional real vector space V, if there is an endomorphism J such that $J^2 = -\mathbf{I}$, show that V must be even dimensional.
- (3) Let M be a (real) smooth manifold. Suppose that there is a $J \in \text{End}(T_{\mathbb{R}}M)$ such that $J^2 = -\mathbf{I}$. For any two tangent vector fields X and Y, define

$$N_J(X,Y) = [X,Y] + J([JX,Y] + [X,JY]) - [JX,JY].$$

(a) Show that N_J is $\mathcal{C}^{\infty}(M; \mathbb{R})$ -linear in both arguments.

Hence, N_J is a tensor. It is called the *Nijenhuis tensor*. The Newlander–Nirenberg Theorem says that J comes from a complex manifold structure if and only if $N_J \equiv 0$.

bonus With J, define T to be the subbundle of $T_{\mathbb{C}}M = T_{\mathbb{R}}M \otimes \mathbb{C}$ whose local sections take the form X - iJX. Similarly, the local section of \overline{T} takes the form X + iJX. Note that both T and \overline{T} are (\mathbb{C} -)subbbundle of $T_{\mathbb{C}}M$. Denote the (\mathbb{C} -)dual by T^* and \overline{T}^* , respectively. It follows from $T^*_{\mathbb{C}}M = T^* \otimes \overline{T}^*$ that

$$\Lambda^2 T^*_{\mathbb{C}} M = (\Lambda^2 T^*) \oplus (T^* \otimes \overline{T}^*) \oplus (\Lambda^2 \overline{T}^*) .$$

Still use the notation $\Omega^{p,q}$ for the sections of $\Lambda^p T^* \otimes \Lambda^q \overline{T}^*$. Now, consider the operator

$$S: \Omega^{1,0} \to \Omega^{0,2}$$
$$a \mapsto \operatorname{pr}_{(0,2)}(\mathrm{d}a)$$

(b) Prove that S is a tensor (i.e. not a differential operator), and is equivalent to N_J .

When J comes from a complex manifold structure, one can compute S by using the holomorphic coordinate. It is clear that $S \equiv 0$ in this case.