GEOMETRY II: HOMEWORK 10

DUE MAY 29

(1) By blowing up \mathbb{C}^{2} at the origin, one gets (the total space of) L_{-1}. Denote by f : $L_{-1} \rightarrow \mathbb{C}^{2}$ the map introduced in lecture. The map f sends the zero section, $\mathbb{C P}^{1}$, to the origin, and is biholomorphic between $L_{-1} \backslash\{$ zero section $\}$ and $\mathbb{C}^{2} \backslash\{0\}$.

Consider $S=\left\{\left(Z_{0}, Z_{1}\right) \in \mathbb{C}^{2}:\left(Z_{0}\right)^{2}=\left(Z_{1}\right)^{3}\right\}$. Note S is a complex submanifold of \mathbb{C}^{2} except at 0 . Denote by \tilde{S} the closure of $f^{-1}(S \backslash\{0\})$. Show that \tilde{S} is a complex submanifold in L_{-1}, and find out $\tilde{S} \cap\{$ zero section $\}$.
(2) Consider the Hopf fibration

$$
\begin{aligned}
& \pi: S^{3} \\
&\left(Z_{0}, Z_{1}\right) \mapsto\left[\mathbb{P}^{1}=S^{2}\right. \\
&\left.Z_{1}, Z_{1}\right] .
\end{aligned}
$$

Denote by $D_{0}=\{[z, 1]:|z| \leq 1\}$ and $D_{1}=\{[1, w]:|w| \leq 1\}$.
(a) Write down diffeomorphisms between $\pi^{-1}\left(D_{j}\right)$ and $D_{j} \times S^{1}$, for $j=0,1$.
(b) Clearly $S^{3}=\pi^{-1}\left(D_{0}\right) \cup \pi^{-1}\left(D_{1}\right)$. Note that $\pi^{-1}\left(D_{0}\right) \cap \pi^{-1}\left(D_{1}\right)$ corresponds to the boundary of the two pieces. Work out the identification map between $\partial\left(D_{0} \times S^{1}\right)$ and $\partial\left(D_{1} \times S^{1}\right)$.
(3) Let M be a complex manifold of dimension n. One can form the holomorphic tangent bundle T, whose local section is spanned by $\left\{\frac{\partial}{\partial z_{j}}\right\}$. Consider the dual bundle T^{*}, which has $\left\{\mathrm{d} z_{j}\right\}$ as the local sections. The line bundle $\Lambda^{n} T^{*}$ is called the canonical bundle of M, and is usually denote by K_{M}.
Since the transition of K_{M} is holomorphic, itself is a complex manifold of dimension $n+1$. Prove that the canonical bundle of $K_{M}, K_{K_{M}}$, is (holomorphically) trivial by constructing a nowhere zero holomorphic section.
(4) Let $M=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left(z_{j}\right)^{2}=1\right\}$. That is the sum of square of complex numbers, but not the norm squares.
(a) Show the M is a complex manifold of dimension $n-1$.
(b) Show that M is homeomorphic to the total space of the tangent bundle of S^{n-1}. Hint: Write $z_{j}=x_{j}+i y_{j}$.
(c) Show that K_{M} is trivial by constructing a nowhere zero holomorphic section.

