GEOMETRY II: HOMEWORK 10

DUE MAY 29

(1) By blowing up \mathbb{C}^2 at the origin, one gets (the total space of) L_{-1} . Denote by $f : L_{-1} \to \mathbb{C}^2$ the map introduced in lecture. The map f sends the zero section, \mathbb{CP}^1 , to the origin, and is biholomorphic between $L_{-1} \setminus \{\text{zero section}\}$ and $\mathbb{C}^2 \setminus \{0\}$.

Consider $S = \{(Z_0, Z_1) \in \mathbb{C}^2 : (Z_0)^2 = (Z_1)^3\}$. Note S is a complex submanifold of \mathbb{C}^2 except at 0. Denote by \tilde{S} the closure of $f^{-1}(S \setminus \{0\})$. Show that \tilde{S} is a complex submanifold in L_{-1} , and find out $\tilde{S} \cap \{\text{zero section}\}$.

(2) Consider the Hopf fibration

$$\pi: \qquad S^3 \quad \to \quad \mathbb{CP}^1 = S^2$$
$$(Z_0, Z_1) \quad \mapsto \quad [Z_0, Z_1] \ .$$

Denote by $D_0 = \{[z, 1] : |z| \le 1\}$ and $D_1 = \{[1, w] : |w| \le 1\}.$

- (a) Write down diffeomorphisms between $\pi^{-1}(D_j)$ and $D_j \times S^1$, for j = 0, 1.
- (b) Clearly $S^3 = \pi^{-1}(D_0) \cup \pi^{-1}(D_1)$. Note that $\pi^{-1}(D_0) \cap \pi^{-1}(D_1)$ corresponds to the boundary of the two pieces. Work out the identification map between $\partial(D_0 \times S^1)$ and $\partial(D_1 \times S^1)$.
- (3) Let M be a complex manifold of dimension n. One can form the holomorphic tangent bundle T, whose local section is spanned by $\{\frac{\partial}{\partial z_j}\}$. Consider the dual bundle T^* , which has $\{dz_j\}$ as the local sections. The line bundle $\Lambda^n T^*$ is called the *canonical* bundle of M, and is usually denote by K_M .

Since the transition of K_M is holomorphic, itself is a complex manifold of dimension n + 1. Prove that the canonical bundle of K_M , K_{K_M} , is (holomorphically) trivial by constructing a nowhere zero holomorphic section.

- (4) Let $M = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : \sum_{j=1}^n (z_j)^2 = 1\}$. That is the sum of square of complex numbers, but not the norm squares.
 - (a) Show the M is a complex manifold of dimension n-1.
 - (b) Show that M is homeomorphic to the total space of the tangent bundle of S^{n-1} . Hint: Write $z_j = x_j + iy_j$.
 - (c) Show that K_M is trivial by constructing a nowhere zero holomorphic section.