GEOMETRY II: HOMEWORK 09

DUE MAY 22

(1) Consider $\operatorname{Gr}(2,4)=\left\{2\right.$-planes in $\left.\mathbb{C}^{4}\right\}$, where 2-plane means 2-dimensional complex vector subspace. Denote by $Z^{j}, j=1, \ldots, 4$ for the standard coordinate on \mathbb{C}^{4}.
(a) For the 2 -planes P which is surject to the $Z^{1} Z^{2}$-plane under the projection, explain how to construct a coordinate on this subset of $\operatorname{Gr}(2,4)$.
(b) Do the same procedure for that with respect to the $Z^{3} Z^{4}$-plane. Determine the overlap region, and check that the coordinate transition is holomorphic.
(2) The Plücker embedding is the map defined by

$$
\begin{array}{ll}
\iota: & \rightarrow \mathbb{P}\left(\Lambda^{k} \mathbb{C}^{n}\right)=\mathbb{P}\left(\mathbb{C}^{N}\right)=\mathbb{C} \mathbb{P}^{N-1} \\
\operatorname{span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\} & \mapsto\left[\mathbb{C}\left\langle\mathbf{v}_{1} \wedge \cdots \wedge \mathbf{v}_{n}\right\rangle\right]
\end{array}
$$

where $N=\binom{n}{k}$. Focus on the case when $k=2$ and $n=4$. The map takes the following form:

$$
\begin{aligned}
\iota: & \operatorname{Gr}(2,4) \\
\operatorname{span}\left\{\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right],\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]\right\} & \mapsto\left[\begin{array}{c}
\left(u_{1} v_{2}-u_{2} v_{1}, u_{3} v_{4}-u_{4} v_{3}, u_{1} v_{3}-u_{3} v_{1}\right. \\
\left.u_{2} v_{4}-u_{4} v_{2}, u_{1} v_{4}-u_{4} v_{1}, u_{2} v_{3}-u_{3} v_{2}\right)
\end{array}\right] .
\end{aligned}
$$

(a) Check the map is holomorphic and injective.
(b) Denote by $\left[\left(Z_{0}, Z_{1}, \ldots, Z_{5}\right)\right]$ the homogenous coordinate for $\mathbb{C P}^{5}$. Prove that $Z_{0} Z_{1}-Z_{2} Z_{3}+Z_{4} Z_{5}=0$ defines a (smooth) submanifold in $\mathbb{C P}^{5}$. Show that it is exactly the image of ι, namely, do the surjectivity part.
(Not a) hint: For injectivity and surjectivity, it actually involves only linear algebra.
(3) Suppose that there is a group action of G on a (complex) manifold M proper, which is properly discontinuous and has no fixed point. Prove that the quotient space M / G is a manifold of the same dimension.

Hint: Here is the key step. For any $p \in M$, find an open neighborhood W such that the points in W are not equivalent under the action of G. To start, there exists an open neighborhood of U_{1} of p which is homeomorphic to the closed unit ball in the Euclidean space, and p is maps to the origin. Let $U_{m} \subset U_{1}$ corresponds to the closed ball of radius $1 / \mathrm{m}$.

