GEOMETRY II: HOMEWORK 08

DUE MAY 15

The main purpose of this Homework set is to introduce the global angular form, which is the key tool in [S.-S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747-752].

Suppose that E is a rank $2 m$, oriented vector bundle. Its Euler form, eu (E), is a d-closed form. It is d-exact means that $\mathrm{eu}(E)$ is trivial in $\mathrm{H}_{\mathrm{dR}}^{2 m}(M)$, which is not true in general. As a parenthetical remark, due to the Poincaré lemma, locally one can always express $\operatorname{Pf}\left(F^{\nabla}\right)$ as an exterior derivative of a $(2 m-1)$-form, but doing so globally may be impossible.

Now, choose a bundle metric on E, and a metric connection ∇ for E. The sphere bundle of E is defined to be

$$
\mathbf{S}(E)=\{v \in E:|v|=1\}
$$

For any $p \in M, \mathbf{S}\left(E_{p}\right)=\pi^{-1}(p) \cap \mathbf{S}(E)$ is diffeomorphic to $S^{2 m-1}$. The global angular form Θ is a (2m-1)-form on $\mathbf{S}(E)$ (not on $M!$) which has the following properties.

- $\left.\Theta\right|_{\mathbf{S}\left(E_{p}\right)}$ is a volume form ${ }^{1}$ on $S^{2 m-1}$.
- $\mathrm{d} \Theta=(\mp) \mathrm{eu}\left(F^{\nabla}\right)$. To be more precise, the right hand side means the pull-back of the Euler form from M to $\mathbf{S}(E)$ by the projection π.
(1) When $m=1$, choose local, oriented, orthonormal sections for $E: e_{1}$ and e_{2}. It gives a coordinate for the fibers by $\xi^{1} e_{1}+\xi^{2} e_{2}$. The connection ∇ takes the form

$$
\nabla\left[\begin{array}{l}
\xi^{1} \\
\xi^{2}
\end{array}\right]=\mathrm{d}\left[\begin{array}{l}
\xi^{1} \\
\xi^{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right]\left[\begin{array}{c}
\xi^{1} \\
\xi^{2}
\end{array}\right]
$$

where a is a locally defined 1 -form on M. Consider the restriction of

$$
-\xi^{2}\left(\mathrm{~d} \xi^{1}+a \xi^{2}\right)+\xi^{1}\left(\mathrm{~d} \xi^{2}-a \xi^{1}\right)
$$

on $\mathbf{S}(E)$.
(a) Check that, up to some constant multiple, (@) satisfies the desired two properties of the global angular form. Note that $\mathbf{S}(E)$ is given by the equation $\left(\xi^{1}\right)^{2}+$ $\left(\xi^{2}\right)^{2}=1$, and thus $\xi^{1} \mathrm{~d} \xi^{1}+\xi^{2} \mathrm{~d} \xi^{2}=0$.
(b) Show that (Φ) is well-defined. Namely, it is invariant under $\mathrm{SO}(2)$-bundle transitions, or equivalently, the choice of oriented, orthonormal sections.

[^0](2) When $m=2$, choose local, oriented, orthonormal sections for $E: e_{1}, e_{2}, e_{3}$ and e_{4}. It gives a coordinate for the fibers by $\sum_{j=1}^{4} \xi^{j} e_{j}$. Denote by a_{i}^{j} the coefficient 1 -form of $\nabla, \nabla e_{i}=a_{i}^{j} e_{j}$. Since ∇ is a metric connection, $a_{i}^{j}+a_{j}^{i}=0$. It follows that
$$
\nabla\left(\xi^{i} e_{i}\right)=\left(\mathrm{d} \xi^{j}\right) e_{j}+\xi^{i} a_{i}^{j} e_{j}
$$

In other words, the connection ∇ takes the form

$$
\nabla\left[\begin{array}{l}
\xi^{1} \\
\xi^{2} \\
\xi^{3} \\
\xi^{4}
\end{array}\right]=\mathrm{d}\left[\begin{array}{l}
\xi^{1} \\
\xi^{2} \\
\xi^{3} \\
\xi^{4}
\end{array}\right]+\left[\begin{array}{cccc}
0 & a_{2}^{1} & a_{3}^{1} & a_{4}^{1} \\
-a_{2}^{1} & 0 & a_{3}^{2} & a_{4}^{2} \\
-a_{3}^{1} & -a_{3}^{2} & 0 & a_{4}^{3} \\
-a_{4}^{1} & -a_{4}^{2} & -a_{4}^{3} & 0
\end{array}\right]\left[\begin{array}{c}
\xi^{1} \\
\xi^{2} \\
\xi^{3} \\
\xi^{4}
\end{array}\right] .
$$

Consider the restriction of

$$
\left.\left.\begin{array}{l}
\xi^{1}\left(\mathrm{~d} \xi^{2}+a_{i}^{2} \xi^{i}\right) \wedge\left(\mathrm{d} \xi^{3}+a_{j}^{3} \xi^{j}\right) \wedge\left(\mathrm{d} \xi^{4}+a_{k}^{4} \xi^{k}\right) \\
-\xi^{2}\left(\mathrm{~d} \xi^{1}+a_{i}^{1} \xi^{i}\right) \wedge\left(\mathrm{d} \xi^{3}+a_{j}^{3} \xi^{j}\right) \wedge\left(\mathrm{d} \xi^{4}+a_{k}^{4} \xi^{k}\right) \\
\quad+\xi^{3}\left(\mathrm{~d} \xi^{1}+a_{i}^{1} \xi^{i}\right)
\end{array}\right)\left(\mathrm{d} \xi^{2}+a_{j}^{2} \xi^{j}\right) \wedge\left(\mathrm{d} \xi^{4}+a_{k}^{4} \xi^{k}\right)\right) .
$$

on $\mathbf{S}(E)$. It is not hard to check that satisfies the first property of the global angular form.
(a) Use (母) to construct a global angular form. You have to add some terms to (which are invariant under $\mathrm{SO}(4)$-bundle transitions, and which help to achieve the second property.
Hint: Something like $\varepsilon_{i j k}\left(\mathrm{~d} \xi^{i}+a_{\ell}^{i} \xi^{\ell}\right) \wedge\left(F_{a}\right)_{j}^{k}$ could be useful, where F_{a} is the curvature.

[^0]: ${ }^{1} \mathrm{~A}$ volume form is a nowhere vanishing top-degree form.

