GEOMETRY II: HOMEWORK 08

DUE MAY 15

The main purpose of this Homework set is to introduce the global angular form, which is the key tool in [S.-S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) **45** (1944), 747–752].

Suppose that E is a rank 2m, oriented vector bundle. Its Euler form, eu(E), is a d-closed form. It is d-exact means that eu(E) is trivial in $H^{2m}_{dR}(M)$, which is not true in general. As a parenthetical remark, due to the Poincaré lemma, *locally* one can always express $Pf(F^{\nabla})$ as an exterior derivative of a (2m - 1)-form, but doing so globally may be impossible.

Now, choose a bundle metric on E, and a metric connection ∇ for E. The sphere bundle of E is defined to be

$$\mathbf{S}(E) = \{ v \in E : |v| = 1 \}$$
.

For any $p \in M$, $\mathbf{S}(E_p) = \pi^{-1}(p) \cap \mathbf{S}(E)$ is diffeomorphic to S^{2m-1} . The global angular form Θ is a (2m-1)-form on $\mathbf{S}(E)$ (not on M!) which has the following properties.

- $\Theta|_{\mathbf{S}(E_n)}$ is a volume form¹ on S^{2m-1} .
- $d\Theta = (\mp) \operatorname{eu}(F^{\nabla})$. To be more precise, the right hand side means the pull-back of the Euler form from M to $\mathbf{S}(E)$ by the projection π .
- (1) When m = 1, choose local, oriented, orthonormal sections for E: e_1 and e_2 . It gives a coordinate for the fibers by $\xi^1 e_1 + \xi^2 e_2$. The connection ∇ takes the form

$$\nabla \begin{bmatrix} \xi^1 \\ \xi^2 \end{bmatrix} = \mathbf{d} \begin{bmatrix} \xi^1 \\ \xi^2 \end{bmatrix} + \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} \begin{bmatrix} \xi^1 \\ \xi^2 \end{bmatrix}$$

where a is a locally defined 1-form on M. Consider the restriction of

$$-\xi^{2}(\mathrm{d}\xi^{1} + a\xi^{2}) + \xi^{1}(\mathrm{d}\xi^{2} - a\xi^{1}) \tag{(\clubsuit)}$$

on $\mathbf{S}(E)$.

- (a) Check that, up to some constant multiple, (\blacklozenge) satisfies the desired two properties of the global angular form. Note that $\mathbf{S}(E)$ is given by the equation $(\xi^1)^2 + (\xi^2)^2 = 1$, and thus $\xi^1 d\xi^1 + \xi^2 d\xi^2 = 0$.
- (b) Show that (♠) is well-defined. Namely, it is invariant under SO(2)-bundle transitions, or equivalently, the choice of oriented, orthonormal sections.

 $^{^1\}mathrm{A}$ volume form is a nowhere vanishing top-degree form.

(2) When m = 2, choose local, oriented, orthonormal sections for E: e_1 , e_2 , e_3 and e_4 . It gives a coordinate for the fibers by $\sum_{j=1}^{4} \xi^j e_j$. Denote by a_i^j the coefficient 1-form of ∇ , $\nabla e_i = a_i^j e_j$. Since ∇ is a metric connection, $a_i^j + a_j^i = 0$. It follows that

$$\nabla(\xi^i e_i) = (\mathrm{d}\xi^j)e_j + \xi^i a_i^j e_j \; .$$

In other words, the connection ∇ takes the form

$$\nabla \begin{bmatrix} \xi^{1} \\ \xi^{2} \\ \xi^{3} \\ \xi^{4} \end{bmatrix} = d \begin{bmatrix} \xi^{1} \\ \xi^{2} \\ \xi^{3} \\ \xi^{4} \end{bmatrix} + \begin{bmatrix} 0 & a_{2}^{1} & a_{3}^{1} & a_{4}^{1} \\ -a_{2}^{1} & 0 & a_{3}^{2} & a_{4}^{2} \\ -a_{3}^{1} & -a_{3}^{2} & 0 & a_{4}^{3} \\ -a_{4}^{1} & -a_{4}^{2} & -a_{4}^{3} & 0 \end{bmatrix} \begin{bmatrix} \xi^{1} \\ \xi^{2} \\ \xi^{3} \\ \xi^{4} \end{bmatrix}$$

Consider the restriction of

$$\begin{split} \xi^{1}(\mathrm{d}\xi^{2} + a_{i}^{2}\xi^{i}) \wedge (\mathrm{d}\xi^{3} + a_{j}^{3}\xi^{j}) \wedge (\mathrm{d}\xi^{4} + a_{k}^{4}\xi^{k}) \\ &- \xi^{2}(\mathrm{d}\xi^{1} + a_{i}^{1}\xi^{i}) \wedge (\mathrm{d}\xi^{3} + a_{j}^{3}\xi^{j}) \wedge (\mathrm{d}\xi^{4} + a_{k}^{4}\xi^{k}) \\ &+ \xi^{3}(\mathrm{d}\xi^{1} + a_{i}^{1}\xi^{i}) \wedge (\mathrm{d}\xi^{2} + a_{j}^{2}\xi^{j}) \wedge (\mathrm{d}\xi^{4} + a_{k}^{4}\xi^{k}) \\ &- \xi^{4}(\mathrm{d}\xi^{1} + a_{i}^{1}\xi^{i}) \wedge (\mathrm{d}\xi^{2} + a_{j}^{2}\xi^{j}) \wedge (\mathrm{d}\xi^{3} + a_{k}^{3}\xi^{k}) \end{split}$$

on $\mathbf{S}(E)$. It is not hard to check that (\clubsuit) satisfies the first property of the global angular form.

(a) Use (♣) to construct a global angular form. You have to add some terms to (♣), which are invariant under SO(4)-bundle transitions, and which help to achieve the second property.

Hint: Something like $\varepsilon_{ijk}(d\xi^i + a^i_\ell \xi^\ell) \wedge (F_a)^k_j$ could be useful, where F_a is the curvature.