GEOMETRY II: HOMEWORK 07

DUE MAY 8

(1) Prove the Whitney formula.
(a) If E_{1} and E_{2} are complex vector bundles over M, then

$$
\mathrm{c}_{k}\left(E_{1} \oplus E_{2}\right)=\sum_{j=0}^{k} \mathrm{c}_{j}\left(E_{1}\right) \wedge \mathrm{c}_{k-j}\left(E_{2}\right)
$$

where $\mathrm{c}_{0}(\cdot)$ is set to be 1 .
(b) If E_{1} and E_{2} are real vector bundles over M, then

$$
\mathrm{p}_{k}\left(E_{1} \oplus E_{2}\right)=\sum_{j=0}^{k} \mathrm{p}_{j}\left(E_{1}\right) \wedge \mathrm{p}_{k-j}\left(E_{2}\right) .
$$

(2) For any non-zero integer n, consider the complex line bundle, L_{n}, over S^{2}, as introduced in the lecture. Show that as the underlying \mathbb{R}^{2}-bundles, L_{n} is isomorphic to L_{-n}.
(3) Write S^{4} as $\mathbb{R}^{4} \cup \mathbb{R}^{4} / \sim$ where the equivalence relation is given by

$$
\left(y^{0}, y^{1}, y^{2}, y^{3}\right)=\frac{1}{|\mathbf{x}|^{2}}\left(x^{0},-x^{1},-x^{2},-x^{3}\right)
$$

on where $\mathbf{x} \neq 0$ and $\mathbf{y} \neq 0$. Declare $\mathrm{d} x^{0} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}$ to be the positive orientation. Denote by U for the \mathbb{R}^{4} with the \mathbf{x} coordinate, and denote by V for the \mathbb{R}^{4} with the y coordinate.

Define a \mathbb{C}^{2}-bundle, E, over S^{4} by the transition

$$
g_{V U}=\left[\begin{array}{cc}
x^{0}+i x^{1} & x^{2}+i x^{3} \\
-x^{2}+i x^{3} & x^{0}-i x^{1}
\end{array}\right]
$$

(a) Check that the map which sends $\left(\mathbf{x},\left(\xi_{1}, \xi_{2}\right)\right) \in U \times \mathbb{C}^{2}$ to \mathbb{C}^{4} given by

$$
\left(\xi_{1}, \xi_{2},\left(x^{0}+i x^{1}\right) \xi_{1}+\left(x^{2}+i x^{3}\right) \xi_{2},\left(-x^{2}+i x^{3}\right) \xi_{1}+\left(x^{0}-i x^{1}\right) \xi_{2}\right)
$$

identifies E as a (complex) subbundle of the trivial bundle $S^{4} \times \mathbb{C}^{4}$.
(b) Define a connection ∇ on E. Check that your expression does obey the transition of the connection.
(c) Evalaute $\int_{S^{4}} \mathrm{c}_{2}(E)$.

