GEOMETRY II: HOMEWORK 06

DUE APRIL 24

- (1) (a) Prove that the tautological line bundle, L, over \mathbb{RP}^n is not a trivial bundle. Recall that $\mathbb{RP}^n = \mathbf{S}^n / \pm 1$.
 - (b) Recall that L is defined to be a subbundle in the trivial bundle, $\mathbb{RP}^n \times \mathbb{R}^{n+1}$. The trivial bundle comes with a bundle metric. Consider L^{\perp} . Show that $T\mathbb{RP}^n$ is isomorphic¹ to $\text{Hom}(L, L^{\perp}) = L^{\perp} \otimes L^*$.
- (2) Consider $\mathbb{CP}^1 = \{ \text{complex lines in } \mathbb{C}^2 \}$. It is the one-point compactification of \mathbb{C} , and is diffeomorphic to \mathbb{S}^2 .
 - (a) Define analogously the tautological (complex) line bundle E over \mathbb{CP}^1 .
 - (b) Recall that $\mathbb{CP}^1 = \frac{\mathbb{C} \cup \mathbb{C}}{z \sim w = z^{-1}}$. In terms of this coordinate cover, work out the transition function of the tautological bundle.
- (3) Suppose that $\mathbb{R}^n \to E \xrightarrow{\pi} M$ is a vector bundle. Let

$$E \times_M E = \{(e_1, e_2) \in E \times E \mid \pi(e_1) = \pi(e_2)\}$$
.

Namely, it associates $E_p \times E_p$ for every $p \in M$. Locally, $E|_{\mathcal{U}} = \mathcal{U} \times \mathbb{R}^n$, $E|_{\mathcal{U}} \times E|_{\mathcal{U}} = (\mathcal{U} \times \mathbb{R}^n) \times (\mathcal{U} \times \mathbb{R}^n)$, and $(E \times E)|_{\mathcal{U}} = \{((x, u), (x, v))\}.$

A bundle metric is a smooth map $\mathfrak{g}: E \times_M E \to \mathbb{R}$ which defines a inner product on E_p for every p.

(a) Prove that for any (real) vector bundle, the transition functions can be required to be orthogonal matrices, i.e.

$$g_{\alpha\beta}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \to \mathcal{O}(k) \subset \mathrm{GL}(k; \mathbb{R})$$
.

Hints: Suppose that $\{s_j\}_{j=1}^k$ form local trivializing sections over some open set. Performing Gram-Schmidt process gives pointwise orthonormal sections over the same open set.

- (b) Show that any real vector bundle is isomorphic (abstractly) to its dual bundle.
- (4) For complex vector bundles, one can always construct a Hermitian bundle metric on them. Discuss what happens for (2.b) over \mathbb{C} . Will E isomorphic to E^* over \mathbb{C} ?

¹Two vector bundles over $M, \pi_j : E_j \to M$, are said to be isomorphic if there is a smooth map $\Phi : E_1 \to E_2$ which commutes with π_j and which is a linear isomorphism over each $p \in M$.