GEOMETRY II: HOMEWORK 05

DUE APRIL 17

(1) Calculate the exterior derivative of the following differential forms.

(a)
$$dz + x dy - y dz$$
 on \mathbb{R}^3 .

(b)
$$\frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{1 + x^2 + y^2}$$
 on \mathbb{R}^2 .
(c) $\frac{1}{|\mathbf{x}|^n} \sum_{j=1}^n (-1)^{j-1} x^j \, \mathrm{d}x^1 \wedge \cdots \wedge \widehat{\mathrm{d}x^j} \wedge \cdots \wedge \mathrm{d}x^n$ on $\mathbb{R}^n \setminus \{0\}$, where $\widehat{\cdot}$ means that the term is not there.

(2) Check that

$$\mathbf{d}(\omega \wedge \eta) = (\mathbf{d}\omega) \wedge \eta + (-1)^k \omega \wedge (\mathbf{d}\eta)$$

for any $\omega \in \Omega^k(M)$ and $\eta \in \Omega^\ell(M)$.

(3) For any 1-form α and vector fields U, V, prove that

$$d\alpha(U, V) = U(\alpha(V)) - V(\alpha(U)) - \alpha([U, V]) .$$

Hint: This formula is local in nature. Due to \mathbb{R} -linearity, it suffices to show it for $\alpha = f(\mathbf{x}) dx^1$.

(4) Consider the following two parametrization for \mathbb{S}^2 :

$$F_{+}(x^{1}, x^{2}) = \frac{1}{1 + (x^{1})^{2} + (x^{2})^{2}} \left(2x^{1}, 2x^{2}, 1 - (x^{1})^{2} - (x^{2})^{2}\right) ,$$

$$F_{-}(y^{1}, y^{2}) = \frac{1}{1 + (y^{1})^{2} + (y^{2})^{2}} \left(2y^{1}, -2y^{2}, -1 + (y^{1})^{2} + (y^{2})^{2}\right) .$$

For the following differentials forms, find their expression in terms of the y-coordinate.

(a)
$$\frac{4}{(1+(x^1)^2+(x^2)^2)^2} dx^1 \wedge dx^2.$$

(b) $\frac{x^1 dx^2 - x^2 dx^1}{(1+(x^1)^2+(x^2)^2)^2}.$

(5) Let $\alpha = P dx + Q dy + R dz$ is a smooth 1-form on \mathbb{R}^3 . Suppose that S is a regular surface with boundary. Still denote by α the restriction of α on S. Check that the Stokes theorem

$$\iint_{S} \mathrm{d}\alpha = \int_{\partial S} \alpha$$

gives the usual Stokes theorem in vector calculus.

(6) Consider the 2-dimensional real projective space, $\mathbb{RP}^2 = S^2/\pm 1$. That is to say, it is the quotient of S^2 by the equivalence relation on antipodal points. Show that \mathbb{RP}^2 is not orientable.

Hint: There is a projection map $\pi: S^2 \to \mathbb{RP}^2$. If there is a nowhere vanishing 2-form μ on \mathbb{RP}^2 , $\pi^*\mu$ would be a nowhere vanishing 2-form on S^2 .