GEOMETRY II: HOMEWORK 05

DUE APRIL 17
(1) Calculate the exterior derivative of the following differential forms.
(a) $\mathrm{d} z+x \mathrm{~d} y-y \mathrm{~d} z$ on \mathbb{R}^{3}.
(b) $\frac{x \mathrm{~d} y-y \mathrm{~d} x}{1+x^{2}+y^{2}}$ on \mathbb{R}^{2}.
(c) $\frac{1}{|\mathbf{x}|^{n}} \sum_{j=1}^{n}(-1)^{j-1} x^{j} \mathrm{~d} x^{1} \wedge \cdots \wedge \widehat{\mathrm{~d} x^{j}} \wedge \cdots \wedge \mathrm{~d} x^{n}$ on $\mathbb{R}^{n} \backslash\{0\}$, where $\widehat{\sim}$ means that the term is not there.
(2) Check that

$$
\mathrm{d}(\omega \wedge \eta)=(\mathrm{d} \omega) \wedge \eta+(-1)^{k} \omega \wedge(\mathrm{~d} \eta)
$$

for any $\omega \in \Omega^{k}(M)$ and $\eta \in \Omega^{\ell}(M)$.
(3) For any 1-form α and vector fields U, V, prove that

$$
\mathrm{d} \alpha(U, V)=U(\alpha(V))-V(\alpha(U))-\alpha([U, V]) .
$$

Hint: This formula is local in nature. Due to \mathbb{R}-linearity, it suffices to show it for $\alpha=f(\mathbf{x}) \mathrm{d} x^{1}$.
(4) Consider the following two parametrization for \mathbb{S}^{2} :

$$
\begin{aligned}
& F_{+}\left(x^{1}, x^{2}\right)=\frac{1}{1+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}}\left(2 x^{1}, 2 x^{2}, 1-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}\right) \\
& F_{-}\left(y^{1}, y^{2}\right)=\frac{1}{1+\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}}\left(2 y^{1},-2 y^{2},-1+\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}\right)
\end{aligned}
$$

For the following differentials forms, find their expression in terms of the \mathbf{y}-coordinate.
(a) $\frac{4}{\left(1+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}\right)^{2}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}$.
(b) $\frac{x^{1} \mathrm{~d} x^{2}-x^{2} \mathrm{~d} x^{1}}{\left(1+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}\right)^{2}}$.
(5) Let $\alpha=P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z$ is a smooth 1-form on \mathbb{R}^{3}. Suppose that S is a regular surface with boundary. Still denote by α the restriction of α on S. Check that the Stokes theorem

$$
\iint_{S} \mathrm{~d} \alpha=\int_{\partial S} \alpha
$$

gives the usual Stokes theorem in vector calculus.
(6) Consider the 2-dimensional real projective space, $\mathbb{R P}^{2}=S^{2} / \pm 1$. That is to say, it is the quotient of S^{2} by the equivalence relation on antipodal points. Show that $\mathbb{R} \mathbb{P}^{2}$ is not orientable.
Hint: There is a projection map $\pi: S^{2} \rightarrow \mathbb{R P}^{2}$. If there is a nowhere vanishing 2 -form μ on $\mathbb{R}^{2}, \pi^{*} \mu$ would be a nowhere vanishing 2 -form on S^{2}.

