GEOMETRY II: HOMEWORK 04

DUE APRIL 10
(1) Let $\Sigma \subset \mathbb{R}^{N}$ be an n-dimensional submanifold, with the induced metric. Consider the restriction of the coordinate functions $\left\{w^{\mu}\right\}_{\mu=1}^{N}$. Show that

$$
\sum_{\mu=1}^{N}\left|\nabla^{\Sigma} w^{\mu}\right|^{2}=n
$$

Hint: $\nabla^{\mathbb{R}^{N}} w^{\mu}$ is the standard basis vector for \mathbb{R}^{N}, e_{μ}.
(2) Let $\Omega \subset \mathbb{R}^{n}$ be a compact, connected region. For simplicity, assume $\partial \Omega$ is a smooth, ($n-1$)-dimensional submanifold. Denote by \mathbf{n} the unit outer normal vector field of $\partial \Omega$. Suppose that u is the solution to the following Neumann problem:

$$
\begin{cases}\Delta u=c_{0} & \text { on } \Omega \\ \frac{\partial u}{\partial \mathbf{n}}=1 & \text { on } \partial \Omega\end{cases}
$$

Here, $\Delta u=\sum_{j=1}^{n} \partial_{j}^{2} u$ is the usual Laplacian on \mathbb{R}^{n}. The constant c_{0} is determined by the Green's identity.

$$
c_{0} \operatorname{Vol}(\Omega)=\int_{\Omega} \Delta u=\int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}}=\operatorname{Vol}(\partial \Omega)
$$

Consider the usual gradient of $u: \nabla u=\left(\partial_{1} u, \cdots, \partial_{n} u\right)$. Define the lower contact set of u by

$$
\Gamma_{u}=\{x \in \Omega: u(y)-u(x) \geq\langle\nabla u(x), y-x\rangle \text { for any } y \in \Omega\} .
$$

It is the set of points x such that the tangent hyperplane to the graph u at x lies below u in all of Ω.
(a) Regard ∇u as a map from Ω to \mathbb{R}^{n}. Prove that $B_{1} \subset(\nabla u)\left(\Gamma_{u}\right)$, where B_{1} is the open unit ball in \mathbb{R}^{n}.
(b) The map ∇u is $\left(\partial_{1} u, \cdots, \partial_{n} u\right)$, and thus its derivative is the Hessian matrix of u. It follows from part (a) that

$$
\operatorname{Vol}\left(B_{1}\right) \leq \int_{\Gamma_{u}} \operatorname{det}(D(\nabla u)) \mathrm{d} x
$$

Use these to show the isoperimetric inequality

$$
\operatorname{Vol}(\Omega)^{n-1} \leq \frac{1}{n^{n} \operatorname{Vol}\left(B_{1}\right)} \operatorname{Vol}(\partial \Omega)^{n}
$$

Remark. $\operatorname{Vol}\left(\partial B_{1}\right)=n \operatorname{Vol}\left(B_{1}\right)$.
(3) (continued from (4) of HW3) Consider the Clifford torus in S^{3} :

$$
\Sigma=\left\{\frac{1}{\sqrt{2}}(\cos \alpha, \sin \alpha, \cos \beta, \sin \beta)\right\}
$$

Note that the unit normal ν of Σ in S^{3} is

$$
\nu=\frac{1}{\sqrt{2}}(\cos \alpha, \sin \alpha,-\cos \beta,-\sin \beta) .
$$

Suppose that there is a one-parameter family of surface in $S^{3}: \Sigma_{t}$ with

$$
\Sigma_{0}=\Sigma \quad,\left.\quad \frac{\partial \Sigma_{t}}{\partial t}\right|_{t=0}=f \nu \quad\left(\text { and }\left.\quad \frac{\partial^{2} \Sigma_{t}}{\partial t^{2}}\right|_{t=0} / / \nu\right)
$$

for some $f \in C^{\infty}(\Sigma)$. Show that

$$
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} \operatorname{Vol}\left(\Sigma_{t}\right)=\int_{\Sigma}\left(|\nabla f|^{2}-4|f|^{2}\right) \mathrm{dvol}
$$

Note. By taking constant functions, Σ is not stable in S^{3}. In fact, minimal submanifolds in the sphere cannot be stable. You saw this phenomenon for geodesics.

